skip to main content
10.1145/3636534.3649351acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Enabling High-rate Backscatter Sensing at Scale

Published: 29 May 2024 Publication History

Abstract

This paper presents μTag, an ultra-low-power backscatter sensor that supports high-frequency sensing of a large number of targets simultaneously. The core of μTag is an RF "gene editing" technique that embeds both the identity of the sensor and the real-time motion state of the attached target intensively in the transient features of the sensor's RF signal, in a collision-resilient manner. We provide practical techniques which i) generate such "genetic signal" with purely analog and extremely simple circuits; and ii) separate the signals from a large scale of sensors reliably. Our experimental results show that our design can support concurrent tracking of 150 targets with a 12kHz per-tag sampling rate. We also demonstrate with multiple sensing applications that μTag can achieve high-speed and large-scale motion tracking and rotation frequency sensing. The PCB power consumption of μTag is 38~107μW, according to the operating frequency of the tag. Our ASIC simulation based on the 40nm CMOS process shows that the power consumption can be further reduced to 0.13~0.52μW.

References

[1]
A. Adhikari, H. Regmi, S. Sur, and S. Nelakuditi. Mishape: Accurate human silhouettes and body joints from commodity millimeter-wave devices. In UbiComp, 2022.
[2]
A. Ahmad, A. Athalye, M. Stanacević, and SR. Das. Collaborative channel estimation in backscattering tag-to-tag networks. In DFHS, 2019.
[3]
A. Ahmad, Y. Huang, X. Sha, A. Athalye, M. Stanaćević, SR. Das, and PM. Djurić. On measuring doppler shifts between tags in a backscattering tag-to-tag network with applications in tracking. In ICASSP, 2020.
[4]
Analog Devices. Adg901. https://www.analog.com/media/en/technical-documentation/data-sheets/ADG901_902.pdf.
[5]
N. Arora, S. L. Zhang, F. Shahmiri, D. Osorio, Y.-C. Wang, M. Gupta, Z. Wang, T. Starner, Z. L. Wang, and G. D. Abowd. Saturn: A thin and flexible self-powered microphone leveraging triboelectric nanogenerator. In UbiComp, 2018.
[6]
KM. Bae, N. Ahn, Y. Chae, P. Pathak, SM. Sohn, and SM. Kim. Omniscatter: extreme sensitivity mmwave backscattering using commodity fmcw radar. In MobiSys, 2022.
[7]
KM. Bae, H. Moon, SM. Sohn, and SM. Kim. Hawkeye: Hectometerrange subcentimeter localization for large-scale mmwave backscatter. In MobiSys, 2023.
[8]
S. Basak and M. Gowda. mmspy: Spying phone calls using mmwave radars. In S&P, 2022.
[9]
T. Boroushaki, I. Perper, M. Nachin, A. Rodriguez, and F. Adib. Rfusion: Robotic grasping via rf-visual sensing and learning. In SenSys, 2021.
[10]
X. Chen, J. Liu, X. Wang, H. Liu, D. Jiang, and L. Chen. Eingerprint: Robust energy-related fingerprinting for passive rfid tags. In NSDI, 2020.
[11]
Z. Chen, P. Yang, J. Xiong, Y. Feng, and XY. Li. Tagray: Contactless sensing and tracking of mobile objects using cots rfid devices. In INFOCOM, 2020.
[12]
G. DeJean, V. Lakafosis, A. Traille, H. Lee, E. Gebara, M. Tentzeris, and D. Kirovski. Rfdna: A wireless authentication system on flexible substrates. In ECTC, 2011.
[13]
Analog Devices. Ltc6906. https://www.analog.com/media/en/technical-documentation/data-sheets/LTC6906.pdf.
[14]
Analog Devices. Ltc6990. https://www.analog.com/media/en/technical-documentation/data-sheets/LTC6990.pdf.
[15]
L. Dodds, I. Perper, A. Eid, and F. Adib. A handheld fine-grained rfid localization system with complex-controlled polarization. In MobiCom, 2023.
[16]
A. Eid, J. Hester, and MM. Tentzeris. A 5.8 ghz fully-tunnel-diodes-based 20 μw, 88mv, and 48 db-gain fully-passive backscattering rfid tag. In IMS, 2020.
[17]
C. Gao, Y. Li, and X. Zhang. Livetag: Sensing human-object interaction through passive chipless wifi tags. In NSDI, 2018.
[18]
C. Gao, X. Zhang, and S. Banerjee. Conductive inkjet printed passive 2d trackpad for vr interaction. In MobiCom, 2018.
[19]
J. Guan, S. Madani, S. Jog, S. Gupta, and H. Hassanieh. Through fog high-resolution imaging using millimeter wave radar. In CVPR, 2020.
[20]
J. Guan, J. Zhang, R. Lu, S. Hyungjoo, J. Zhou, S. Gong, and H. Hassanieh. Efficient wideband spectrum sensing using mems acoustic resonators. In NSDI, 2021.
[21]
J. Guo, T. Wang, M. Jin, S. Yang, C. Jiang, L. Liu, and Y. He. Tagleak: Nonintrusive and battery-free liquid leakage detection with backscattered signals. In ICII, 2018.
[22]
X. Guo, Y. He, Z. Yu, J. Zhang, Y. Liu, and L. Shangguan. Rf-transformer: A unified backscatter radio hardware abstraction. In MobiCom, 2022.
[23]
X. Guo, L. Shangguan, Y. He, N. Jing, J. Zhang, H. Jiang, and Y. Liu. Saiyan: Design and implementation of a low-power demodulator for lora backscatter systems. In NSDI, 2022.
[24]
X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, AA. Siddiqi, and Y. Liu. Aloba: Rethinking on-off keying modulation for ambient lora backscatter. In SenSys, 2020.
[25]
T. Hashizume, T. Sasatani, K. Narumi, Y. Narusue, Y. Kawahara, and T. Asami. Passive and contactless epidermal pressure sensor printed with silver nano-particle ink. In UbiComp, 2016.
[26]
Y. He, J. Guo, and X. Zheng. From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Processing Magazine, 2018.
[27]
Y. He, Y. Zheng, M. Jin, S. Yang, X. Zheng, and Y. Liu. Red: Rfid-based eccentricity detection for high-speed rotating machinery. IEEE Transactions on Mobile Computing, 20(4), 2021.
[28]
M. Hessar, A. Najafi, and S. Gollakota. Netscatter: Enabling large-scale backscatter networks. In NSDI, 2019.
[29]
Y. Hou, J. Ou, Y. Zheng, and M. Li. Place: Physical layer cardinality estimation for large-scale rfid systems. IEEE/ACM Transactions on Networking, 2015.
[30]
P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully asymmetric backscatter communication. In SIGCOMM, 2015.
[31]
C. Jiang, J. Guo, Y. He, M. Jin, S. Li, and Y. Liu. mmvib: Micrometer-level vibration measurement with mmwave radar. In MobiCom, 2020.
[32]
C. Jiang, Y. He, M. Jin, X. Zheng, and J. Guo. Canon: Exploiting channel diversity for reliable parallel decoding in backscatter communication. In ICNP, 2018.
[33]
C. Jiang, Y. He, S. Yang, J. Guo, and Y. Liu. 3d-omnitrack: 3d tracking with cots rfid systems. In IPSN, 2019.
[34]
C. Jiang, Y. He, X. Zheng, and Y. Liu. Orientation-aware rfid tracking with centimeter-level accuracy. In IPSN, 2018.
[35]
H. Jiang, J. Zhang, X. Guo, and Y. He. Sense me on the ride: Accurate mobile sensing over a lora backscatter channel. In SenSys, 2021.
[36]
J. Jiang, Z. Xu, F. Dang, and J. Wang. Long-range ambient lora backscatter with parallel decoding. In MobiCom, 2021.
[37]
H. Jin, Z. Yang, S. Kumar, and JI. Hong. Towards wearable everyday body-frame tracking using passive rfids. In UbiComp, 2018.
[38]
M. Jin, Y. He, C. Jiang, and Y. Liu. Fireworks: Channel estimation of parallel backscattered signals. In IPSN, 2020.
[39]
M. Jin, Y. He, X. Meng, D. Fang, and X. Chen. Parallel backscater in the wild: When burstiness and randomness play with you. In MobiCom, 2018.
[40]
M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen. Fliptracer: Practical parallel decoding for backscatter communication. In MobiCom, 2017.
[41]
C. Josephson, M. Kotaru, K. Winstein, S. Katti, and R. Chandra. Low-cost in-ground soil moisture sensing with radar backscatter tags. In COMPASS, 2021.
[42]
Y. Kawahara, H. Lee, and M. M. Tentzeris. Sensprout: Inkjet-printed soil moisture and leaf wetness sensor. In UbiComp, 2012.
[43]
A. Kiaghadi, P. Hu, J. Gummeson, S. Rostaminia, and D. Ganesan. Continuous measurement of interactions with the physical world with a wrist-worn backscatter reader. ACM Transactions on Internet of Things, 2020.
[44]
A. Kludze and Y. Ghasempour. Leakyscatter: A frequency-agile directional backscatter network above 100 ghz. In NSDI, 2023.
[45]
Z. Li, B. Chen, Z. Yang, H. Li, C. Xu, X. Chen, K. Wang, and W. Xu. Ferrotag: A paper-based mmwave-scannable tagging infrastructure. In SenSys, 2019.
[46]
Z. Li, F. Ma, AS. Rathore, Z. Yang, B. Chen, L. Su, and W. Xu. Wavespy: Remote and through-wall screen attack via mmwave sensing. In S&P, 2020.
[47]
B. Liang, P. Wang, R. Zhao, H. Guo, P. Zhang, J. Guo, S. Zhu, HH. Liu, X. Zhang, and C. Xu. Rf-chord: Towards deployable rfid localization system for logistic networks. In NSDI, 2023.
[48]
Q. Lin, L. Yang, H. Jia, C. Duan, and Y. Liu. Revisiting reading rate with mobility: Rate-adaptive reading in cots rfid system. In CoNEXT, 2017.
[49]
X. Liu, D. Liu, J. Zhang, T. Gu, and K. Li. Rfid and camera fusion for recognition of human-object interactions. In MobiCom, 2021.
[50]
Y. Liu, S. Zhang, M. Gowda, and S. Nelakuditi. mmrti: Radio tomographic imaging using highly-directional millimeter-wave devices for accurate and robust indoor localization. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022.
[51]
Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib. 3d backscatter localization for fine-grained robotics. In NSDI, 2019.
[52]
C. Lynch, A. O. Adeyeye, A. Eid, J. G. Hester, and M. M. Tentzeris. 5g/mm-wave fully-passive dual rotman lens-based harmonic mmid for long range microlocalization over wide angular ranges. IEEE Transactions on Microwave Theory and Techniques, 71(1), 2023.
[53]
D. Ma, C. Qian, W. Li, J. Han, and J. Zhao. Geneprint: Generic and accurate physical-layer identification for uhf rfid tags. In ICNP, 2013.
[54]
Y. Ma, N. Selby, and F. Adib. Drone relays for battery-free networks. In SIGCOMM, 2017.
[55]
Y. Ma, N. Selby, and F. Adib. Minding the billions: Ultra-wideband localization for deployed rfid tags. In MobiCom, 2017.
[56]
MH. Mazaheri, A. Chen, and O. Abari. Millimeter wave backscatter: Toward batteryless wireless networking at gigabit speeds. In HotNets, 2020.
[57]
MH. Mazaheri, A. Chen, and O. Abari. Mmtag: A millimeter wave backscatter network. In SIGCOMM, 2021.
[58]
X. Na, X. Guo, Z. Yu, J. Zhang, Y. He, and Y. Liu. Leggiero: Analog wifi backscatter with payload transparency. In MobiSys, 2023.
[59]
K. Narumi, S. Hodges, and Y. Kawahara. Conductar: an augmented reality based tool for iterative design of conductive ink circuits. In UbiComp, 2015.
[60]
Onsemi. Ncs2250. https://www.onsemi.com/pdf/datasheet/ncs2250-d.pdf.
[61]
J. Ou, M. Li, and Y. Zheng. Come and be served: Parallel decoding for cots rfid tags. In MobiCom, 2015.
[62]
Q. Pan, Z. An, X. Yang, X. Zhao, and L. Yang. Rf-dna: Large-scale physical-layer identifications of rfids via dual natural attributes. In MobiCom, 2022.
[63]
A. Patra, L. Simic, and M. Petrova. Leveraging the properties of mmwave signals for 3d finger motion tracking for interactive iot applications. In PIMRC, 2017.
[64]
A. Prabhakara, T. Jin, A. Das, G. Bhatt, L. Kumari, E. Soltanaghai, J. Bilmes, S. Kumar, and A. Rowe. High resolution point clouds from mmwave radar. In ICRA, 2023.
[65]
A. Prabhakara, V. Singh, S. Kumar, and A. Rowe. Osprey: A mm-wave approach to tire wear sensing. In MobiSys, 2020.
[66]
S. Pradhan, E. Chai, K. Sundaresan, S. Rangarajan, and L. Qiu. Konark: A rfid based system for enhancing in-store shopping experience. In MobiSys, 2017.
[67]
S. Pradhan, E. Chai, K. Sundaresan, S. Rangarajan, L. Qiu, M. A. Khojastepour, and S. Rangarajan. Rio: A perspective rfid-based touch gesture interface. In MobiCom, 2017.
[68]
S. Pradhan, S. Li, and L. Qiu. Rotation sensing using passive rfid tags. In MobiHoc, 2021.
[69]
W. Richard. Monopole pcb antenna with single or dual band option. Texas Instruments Design Note DN024, pages 1--16, 2013.
[70]
J. Ryoo, Y. Karimi, A. Athalye, M. Stanaćević, SR. Das, and P. Djurić. Barnet: Towards activity recognition using passive backscattering tag-to-tag network. In MobiSys, 2018.
[71]
EM. Sitar, MS. Saadat, and S. Sur. A millimeter-wave wireless sensing approach for at-home exercise recognition. In MobiSys, 2022.
[72]
E. Soltanaghai, A. Prabhakara, A. Balanuta, M. Anderson, J. Rabaey, S. Kumar, and A. Rowe. Millimetro: mmwave retro-reflective tags for accurate, long range localization. In MobiCom, 2021.
[73]
C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and S. Lu. Multitouch in the air: Device-free finger tracking and gesture recognition via cots rfid. In INFOCOM, 2018.
[74]
C. Wang, J. Liu, Y. Chen, L. Xie, HB. Liu, and S. Lu. Rf-kinect: A wearable rfid-based approach towards 3d body movement tracking. In UbiComp, 2018.
[75]
C. Wang, L. Xie, W. Wang, Y. Chen, Y. Bu, and S. Lu. Rf-ecg: Heart rate variability assessment based on cots rfid tag array. In UbiComp, 2018.
[76]
C. Wang, L. Xie, W. Wang, T. Xue, and S. Lu. Moving tag detection via physical layer analysis for large-scale rfid systems. In INFOCOM, 2016.
[77]
J. Wang, V. Ranganathan, J. Lester, and S. Kumar. Ultra low-latency backscatter for fast-moving location tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022.
[78]
J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: Virtual touch screen in the air using rf signals. In SIGCOMM, 2014.
[79]
J. Wang, J. Zhang, R. Saha, H. Jin, and S. Kumar. Pushing the range limits of commercial passive rfids. In NSDI, 2019.
[80]
T. Wei and X. Zhang. Gyro in the air: Tracking 3d orientation of batteryless internet-of-things. In MobiCom, 2016.
[81]
B. Xie, J. Xiong, X. Chen, and D. Fang. Exploring commodity rfid for contactless sub-millimeter vibration sensing. In SenSys, 2020.
[82]
J. Xu, W. Sun, A. Bakshi, and K. Srinivasan. Embracing collisions: Enabling parallel channel estimation with cots passive backscatter tags. In LIOT, 2020.
[83]
H. Xue, Y. Ju, C. Miao, Y. Wang, S. Wang, A. Zhang, and L. Su. mmmesh: Towards 3d real-time dynamic human mesh construction using millimeter-wave. In MobiSys, 2021.
[84]
L. Yang, Y. Chen, XY. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: real-time tracking of mobile rfid tags to high precision using cots devices. In MobiCom, 2014.
[85]
L. Yang, Y. Li, Q. Lin, XY. Li, and Y. Liu. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals. In MobiCom, 2016.
[86]
L. Yang, P. Peng, F. Dang, C. Wang, X.-Y. Li, and Y. Liu. Anti-counterfeiting via federated rfid tags' fingerprints and geometric relationships. In INFOCOM, 2015.
[87]
P. Yang, Y. Feng, J. Xiong, Z. Chen, and XY. Li. Rf-ear: Contactless multi-device vibration sensing and identification using cots rfid. In INFOCOM, 2020.
[88]
S. Yang, M. Jin, and Y. He. Rf-prism: Versatile rfid-based sensing through phase disentangling. In ICDCS, 2021.
[89]
D. Zanetti, B. Danev, and S. Capkun. Physical-layer identification of uhf rfid tags. In MobiCom, 2010.
[90]
J. Zhang, E. Soltanaghaei, A. Balanuta, R. Grimsley, S. Kumar, and A. Rowe. Platter: On the feasibility of building-scale power line backscatter. In NSDI, 2022.
[91]
R. Zhao, F. Zhu, Y. Feng, S. Peng, X. Tian, H. Yu, and X. Wang. Ofdmaenabled wi-fi backscatter. In MobiCom, 2019.
[92]
Yang Zou, X. Na, X. Guo, Y. Sun, and Y. He. Trident: Interference avoidance in multi-reader backscatter network via frequency-space division. In INFOCOM, 2024.

Cited By

View all

Index Terms

  1. Enabling High-rate Backscatter Sensing at Scale

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ACM MobiCom '24: Proceedings of the 30th Annual International Conference on Mobile Computing and Networking
    December 2024
    2476 pages
    ISBN:9798400704895
    DOI:10.1145/3636534
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2024

    Check for updates

    Author Tags

    1. internet-of-things
    2. backscatter
    3. wireless sensing

    Qualifiers

    • Research-article

    Funding Sources

    • National Key Research and Development Program of China under Grant
    • National Natural Science Fund of China

    Conference

    ACM MobiCom '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 440 of 2,972 submissions, 15%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 563
      Total Downloads
    • Downloads (Last 12 months)563
    • Downloads (Last 6 weeks)53
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media