skip to main content
10.1145/3637528.3671490acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
abstract

FedKDD: International Joint Workshop on Federated Learning for Data Mining and Graph Analytics

Published: 24 August 2024 Publication History

Abstract

Deep Learning has facilitated various high-stakes applications such as crime detection, urban planning, drug discovery, and healthcare. Its continuous success hinges on learning from massive data in miscellaneous sources, ranging from data with independent distributions to graph-structured data capturing intricate inter-sample relationships. Scaling up the data access requires global collaboration from distributed data owners. Yet, centralizing all data sources to an untrustworthy centralized server will put users' data at risk of privacy leakage or regulation violation. Federated Learning (FL) is a de facto decentralized learning framework that enables knowledge aggregation from distributed users without exposing private data. Though promising advances are witnessed for FL, new challenges are emerging when integrating FL with the rising needs and opportunities in data mining, graph analytics, foundation models, generative AI, and new interdisciplinary applications in science. By hosting this workshop, we aim to attract a broad range of audiences, including researchers and practitioners from academia and industry interested in the emergent challenges in FL. As an effort to advance the fundamental development of FL, this workshop will encourage ideas exchange on the trustworthiness, scalability, and robustness of distributed data mining and graph analytics and their emergent challenges.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
August 2024
6901 pages
ISBN:9798400704901
DOI:10.1145/3637528
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 August 2024

Check for updates

Author Tags

  1. applications
  2. distributed data mining
  3. federated learning
  4. graph analytics
  5. trustworthiness

Qualifiers

  • Abstract

Funding Sources

Conference

KDD '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 150
    Total Downloads
  • Downloads (Last 12 months)150
  • Downloads (Last 6 weeks)23
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media