skip to main content
10.1145/3638682.3638699acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvsipConference Proceedingsconference-collections
research-article

Joint Classification of Multi-Source Remote Sensing Data Based on Multi-Scale Features and Attention Mechanism

Published: 22 May 2024 Publication History

Abstract

In order to fully extract spatial and elevation information for joint classification of hyperspectral image (HSI) and LiDAR (LiDAR) data, a multi-source remote sensing classification network based on multi-scale feature and attention mechanism is proposed in this paper. Firstly, a multi-scale extraction module is designed to extract spatial features of HSI and LiDAR data. Then, the weights of HSI and LiDAR spatial features are assigned adaptively by employing a spatial attention module. Next, the feature maps from two branches are fused, and the final classification results are yielded by Softmax. Experiments conducted on two public datasets demonstrate that the proposed method outperforms several existing advanced methods for HSI and LiDAR joint classification.

References

[1]
Salem F., Kafatos M., El‐Ghazawi T., Smith W.L., Shabanov N. V., Huang C., Sun G., Tesfaye M. Z., Prasad S. Hyperspectral image assessment of oil‐contaminated wetland. International Journal of Remote Sensing, 2005, 26(4): 811-821.
[2]
Dale L. M., Thewis A., Boudry C., Despagne F., Gérard P., Lebeau F., Massart X., Sindic M. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review. Applied Spectroscopy Reviews, 2013, 48(2): 142-159.
[3]
Song A., Kim Y. Deep learning-based hyperspectral image classification with application o environmental geographic information systems. Korean Journal of Remote Sensing, 2017, 33(62): 1061-1073.
[4]
Briottet X., Boucher Y., Dimmeler A., Reulke R., Suomalainen J., Mueller A., Holzwarth S., Strobl P., Bulatov D., Richter R., Schlapfer D. Military applications of hyperspectral imagery Targets and backgrounds XII: Characterization and representation. SPIE, 2006, 6239: 82-89.
[5]
Chen, Y., Li, X., & Hu, W. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6), 2094-2107.
[6]
Li, W., Hu, Q., & Li, X. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. Remote Sensing, 2017, 9(7), 673.
[7]
Hu X., Li Y., Shan J., Gong J., Li L., Gong Y. Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7448-7456.
[8]
Anttila K., Hakala T., Kaasalainen S., Kaartinen H., Kukko A., Lehtola V., Mäkynen J., Nevalainen O., Rosnell T., Sarjakoski T., Silvennoinen R., Virtanen J. Calibrating laser scanner data from snow surfaces: Correction of intensity effects. Cold Regions Science and Technology, 2016, 121: 52-59.
[9]
Ghamisi P., Rasti B., Yokoya N., Benediktsson J. A., Waske B., Heremans R., Zhu X. X., Liang X., Moser G., Cheng G., Liao W., Plaza A., Tuia D., Pelletier C., Shi Q., Yokoya N., Zhu X. X. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 6-39.
[10]
Debes C., Merentitis A., Heremans R., Bovolo F., Bruzzone L., Camps-Valls G., Chan J. C. W., Dumitru C. O., Gautama S., Ghamisi P., Kang X., Li W., Li Y., Liao W., Moser G., Palsson O. P., Plaza A., Rasti B., Sun Y., Tuia D., Yokoya N., Zhu X. X. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2405-2418.
[11]
Hong D., Gao L., Hang R., Yuan Y., Zhu Y., Zhang C., Zhang H., Huang J., Zhang L. Deep encoder–decoder networks for classification of hyperspectral and LiDAR data. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
[12]
Cao X., Zhou F., Xu L., Liu Q., Zhang L., Li Y. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Transactions on image processing, 2018, 27(5): 2354-2367.
[13]
Xu X., Li W., Ran Q., Du P., Liu X., Zhang Y. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2): 937-949.
[14]
Zhang, X., Li, X., & Liu, Y. Hyperspectral image classification based on multi-scale features. Journal of Sensors, 2017, 2017.
[15]
Xu, X., Zhang, L., Zhang, D., Zhu X., Wu X., Liang D. SE-Res2Net: A novel multi-scale feature extraction module based on Res2Net and SE-Net for hyperspectral image classification. Remote Sensing, 2020, 12(4), 663.
[16]
Yang, Y., Zhou, Y., & Chen, J. Hyperspectral image classification based on multi-scale hybrid convolutional
[17]
Hang R., Li Z., Ghamisi P., Benediktsson J. A., Zhu X., Zhang H., Huang J., Zhang L. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939-4950.
[18]
Xi Y., Ye Z. Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data. Journal of Beijing Institute of Technology, 2023, 32(01): 13-22.
[19]
Gader P., Zare A., Close R. Muufl gulfport hyperspectral and lidar airborne data set. Univ. Florida, Gainesville, FL, USA, Tech. Rep. REP-2013-570, 2013.
[20]
Rasti B., Ghamisi P., Gloaguen R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3997-4007.

Index Terms

  1. Joint Classification of Multi-Source Remote Sensing Data Based on Multi-Scale Features and Attention Mechanism

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    VSIP '23: Proceedings of the 2023 5th International Conference on Video, Signal and Image Processing
    November 2023
    237 pages
    ISBN:9798400709272
    DOI:10.1145/3638682
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. classification
    2. multi-scale features
    3. multi-source remote sensing data
    4. spatial attention mechanism

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    VSIP 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 18
      Total Downloads
    • Downloads (Last 12 months)18
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media