skip to main content
10.1145/3638884.3638938acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccipConference Proceedingsconference-collections
research-article

Multi-height Visual Drone Positioning Based on LSTM and Convolutional Neural Networks

Published:23 April 2024Publication History

ABSTRACT

The ability to autonomously and precisely locate unmanned aerial vehicles (UAVs) is critical to successfully operate in complex and challenging environments. This paper addresses the challenge of location determination for UAVs in scenarios where GPS signals are weak or unavailable. The proposed solution introduces a novel multi-height localization system, leveraging the power of Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) to process visual data captured by a UAV’s onboard camera. By analyzing visual information, this system enables UAVs to determine their positions at various altitudes accurately. When GPS signals are unreliable or obstructed, the proposed method offers a robust alternative, enhancing the overall reliability and autonomy of UAV missions. Experimental results demonstrate the real-time effectiveness of our multi-height localization system, showcasing its capability to accurately determine UAV locations at different altitudes.

References

  1. Seongha Ahn, Hosun Kang, and Jangmyung Lee. 2021. Aerial-Satellite Image Matching Framework for UAV Absolute Visual Localization using Contrastive Learning. In 2021 21st International Conference on Control, Automation and Systems (ICCAS). IEEE, 143–146. https://ieeexplore.ieee.org/abstract/document/9649999/Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Rodion O. Anisimov, Nikolay V. Goloburdin, Konstantin A. Kulagin, Tatiana Ya Gladkikh, and Yuri D. Vorobiev. 2022. Visual Localization System Algorithm for UAV. In 2022 International Conference on Information, Control, and Communication Technologies (ICCT). IEEE, 1–5. https://ieeexplore.ieee.org/abstract/document/9976692/Google ScholarGoogle Scholar
  3. Yuqing Cao, Kan Ren, and Qian Chen. 2023. Template matching based on convolution neural network for UAV visual localization. Optik 283 (2023), 170920. https://www.sciencedirect.com/science/article/pii/S0030402623004163Google ScholarGoogle ScholarCross RefCross Ref
  4. Andy Couturier and Moulay Akhloufi. 2020. Conditional probabilistic relative visual localization for unmanned aerial vehicles. In 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 1–4. https://ieeexplore.ieee.org/abstract/document/9255691/Google ScholarGoogle ScholarCross RefCross Ref
  5. Andy Couturier and Moulay A. Akhloufi. 2018. Relative visual localization (RVL) for UAV navigation. In Degraded Environments: Sensing, Processing, and Display 2018, Vol. 10642. SPIE, 213–226. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10642/106420O/Relative-visual-localization-RVL-for-UAV-navigation/10.1117/12.2304901.shortGoogle ScholarGoogle Scholar
  6. Andy Couturier and Moulay A. Akhloufi. 2021. A review on absolute visual localization for UAV. Robotics and Autonomous Systems 135 (2021), 103666. https://www.sciencedirect.com/science/article/pii/S0921889020305066Google ScholarGoogle ScholarCross RefCross Ref
  7. Jan Dufek and Robin Murphy. 2016. Visual pose estimation of USV from UAV to assist drowning victims recovery. In 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 147–153. https://ieeexplore.ieee.org/abstract/document/7784291/Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Christoforos Kanellakis and George Nikolakopoulos. 2016. Evaluation of visual localization systems in underground mining. In 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, 539–544. https://ieeexplore.ieee.org/abstract/document/7535853/Google ScholarGoogle ScholarCross RefCross Ref
  9. Jouko Kinnari, Riccardo Renzulli, Francesco Verdoja, and Ville Kyrki. 2023. LSVL: Large-scale season-invariant visual localization for UAVs. Robotics and Autonomous Systems 168 (2023), 104497. https://www.sciencedirect.com/science/article/pii/S0921889023001367Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jouko Kinnari, Francesco Verdoja, and Ville Kyrki. 2022. Season-invariant gnss-denied visual localization for uavs. IEEE Robotics and Automation Letters 7, 4 (2022), 10232–10239. https://ieeexplore.ieee.org/abstract/document/9830867/Google ScholarGoogle ScholarCross RefCross Ref
  11. I. A. Kunina, L. M. Teplyakov, A. P. Gladkov, Timur M. Khanipov, and Dmitry P. Nikolaev. 2018. Aerial images visual localization on a vector map using color-texture segmentation. In Tenth International Conference on Machine Vision (ICMV 2017), Vol. 10696. SPIE, 465–472. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10696/106961T/Aerial-images-visual-localization-on-a-vector-map-using-color/10.1117/12.2310138.shortGoogle ScholarGoogle Scholar
  12. Chengyao Li and Steven L. Waslander. 2019. Visual measurement integrity monitoring for uav localization. In 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 22–29. https://ieeexplore.ieee.org/abstract/document/8848975/Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Vincenzo Lippiello and Jonathan Cacace. 2021. Robust visual localization of a uav over a pipe-rack based on the lie group se (3). IEEE Robotics and Automation Letters 7, 1 (2021), 295–302. https://ieeexplore.ieee.org/abstract/document/9601262/Google ScholarGoogle ScholarCross RefCross Ref
  14. Yuncheng Lu, Zhucun Xue, Gui-Song Xia, and Liangpei Zhang. 2018. A survey on vision-based UAV navigation. Geo-spatial Information Science 21, 1 (Jan. 2018), 21–32. https://doi.org/10.1080/10095020.2017.1420509Google ScholarGoogle ScholarCross RefCross Ref
  15. Liqun Ma, Dongyuan Meng, Shuaihe Zhao, and Binbin An. 2023. Visual localization with a monocular camera for unmanned aerial vehicle based on landmark detection and tracking using YOLOv5 and DeepSORT. International Journal of Advanced Robotic Systems 20, 3 (May 2023), 172988062311648. https://doi.org/10.1177/17298806231164831Google ScholarGoogle ScholarCross RefCross Ref
  16. Hamza Merzi, Elena Stumm, Marcin Dymczyk, Roland Siegwart, and Igor Gilitschenski. 2017. Map quality evaluation for visual localization. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 3200–3206. https://ieeexplore.ieee.org/abstract/document/7989363/Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Wided Souidene Mseddi, Mohamed Ali Sedrine, and Rabah Attia. 2021. YOLOv5 based visual localization for autonomous vehicles. In 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 746–750. https://ieeexplore.ieee.org/abstract/document/9616354/Google ScholarGoogle ScholarCross RefCross Ref
  18. Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D. Tardos. 2015. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on robotics 31, 5 (2015), 1147–1163. https://ieeexplore.ieee.org/abstract/document/7219438/Google ScholarGoogle Scholar
  19. Bhavit Patel. 2019. Visual Localization for UAVs in Outdoor GPS-denied Environments. University of Toronto (Canada). https://search.proquest.com/openview/ff54ad672f25af4497a2176ba06f47a1/1?pq-origsite=gscholar&cbl=18750&diss=yGoogle ScholarGoogle Scholar
  20. Bhavit Patel, Timothy D. Barfoot, and Angela P. Schoellig. 2020. Visual localization with google earth images for robust global pose estimation of uavs. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 6491–6497. https://ieeexplore.ieee.org/abstract/document/9196606/Google ScholarGoogle ScholarCross RefCross Ref
  21. Bhavit Patel, Michael Warren, and Angela Schoellig. 2019. Point me in the right direction: Improving visual localization on UAVs with active gimballed camera pointing. In 2019 16th Conference on Computer and Robot Vision (CRV). IEEE, 105–112. https://ieeexplore.ieee.org/abstract/document/8781627/Google ScholarGoogle ScholarCross RefCross Ref
  22. Eduardo Perdices and José María Cañas. 2019. SDVL: Efficient and accurate semi-direct visual localization. Sensors 19, 2 (2019), 302. https://www.mdpi.com/1424-8220/19/2/302Google ScholarGoogle ScholarCross RefCross Ref
  23. Jae Hong Shim and Young Im Cho. 2017. A visual localization technique for unmanned ground and aerial robots. In 2017 First IEEE International Conference on Robotic Computing (IRC). IEEE, 399–403. https://ieeexplore.ieee.org/abstract/document/7926572/Google ScholarGoogle ScholarCross RefCross Ref
  24. Haoyang Tang, Jiakun Shi, Xin Miao, Ruichen Wu, and Dongfang Yang. 2022. UAV Visual Localization Technology Based on Heterogenous Remote Sensing Image Matching. In Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition. ACM, 773–779. https://doi.org/10.1145/3573942.3574094 Place: Xiamen China.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kailin Wen, Jie Chu, Jiayan Chen, Yu Chen, and Jueping Cai. 2022. MO SiamRPN with Weight Adaptive Joint MIoU for UAV Visual Localization. Remote Sensing 14, 18 (2022), 4467. https://www.mdpi.com/2072-4292/14/18/4467Google ScholarGoogle ScholarCross RefCross Ref
  26. Bayang Xue, Zhong Yang, Luwei Liao, Chi Zhang, Hao Xu, and Qiuyan Zhang. 2022. High precision visual localization method of UAV based on feature matching. Frontiers in Computational Neuroscience 16 (2022), 1037623. https://www.frontiersin.org/articles/10.3389/fncom.2022.1037623/fullGoogle ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Multi-height Visual Drone Positioning Based on LSTM and Convolutional Neural Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICCIP '23: Proceedings of the 2023 9th International Conference on Communication and Information Processing
      December 2023
      648 pages
      ISBN:9798400708909
      DOI:10.1145/3638884

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 April 2024

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate61of301submissions,20%
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format