Utilizing Non-click Samples via Semi-supervised Learning for Conversion Rate Prediction
Abstract
References
Index Terms
- Utilizing Non-click Samples via Semi-supervised Learning for Conversion Rate Prediction
Recommendations
Semi-supervised partial label learning algorithm via reliable label propagation
AbstractPartial label learning (PLL) is a weakly supervised learning method that is able to predict one label as the correct answer from a given candidate label set. In PLL, when all possible candidate labels are as signed to real-world training examples, ...
Inductive Semi-supervised Multi-Label Learning with Co-Training
KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningIn multi-label learning, each training example is associated with multiple class labels and the task is to learn a mapping from the feature space to the power set of label space. It is generally demanding and time-consuming to obtain labels for training ...
Multiview Semi-Supervised Learning with Consensus
Obtaining high-quality and up-to-date labeled data can be difficult in many real-world machine learning applications. Semi-supervised learning aims to improve the performance of a classifier trained with limited number of labeled data by utilizing the ...
Comments
Information & Contributors
Information
Published In

Sponsors
- SIGWEB: ACM Special Interest Group on Hypertext, Hypermedia, and Web
- SIGAI: ACM Special Interest Group on Artificial Intelligence
- SIGKDD: ACM Special Interest Group on Knowledge Discovery in Data
- SIGIR: ACM Special Interest Group on Information Retrieval
- SIGCHI: ACM Special Interest Group on Computer-Human Interaction
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 1,684Total Downloads
- Downloads (Last 12 months)1,684
- Downloads (Last 6 weeks)78
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign inFull Access
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML Format