skip to main content
10.1145/3641513.3650125acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article
Free Access

Inner and outer approximate quantifier elimination for general reachability problems

Published:14 May 2024Publication History

ABSTRACT

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

References

  1. Chaouki Abdallah, Peter Dorato, and Wei Yang. 1970. Applications Of Quantifier Elimination Theory To Control System Design. Proceedings of the 4th IEEE Mediterranean Symposium on Control and Automation (02 1970).Google ScholarGoogle Scholar
  2. M. Althoff. 2013. Reachability Analysis of Nonlinear Systems Using Conservative Polynomialization and Non-convex Sets. In HSCC. ACM publishers, 173–182.Google ScholarGoogle Scholar
  3. M. Althoff, C. Le Guernic, and B. H. Krogh. 2011. Reachable set computation for uncertain time-varying linear systems. In International Conference on Hybrid Systems: Computation and Control. 93––102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Althoff, O. Stursberg, and M. Buss. 2008. Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In Proceedings of CDC. 4042–4048.Google ScholarGoogle Scholar
  5. S. Bansal, M. Chen, S. L. Herbert, and C. J. Tomlin. 2017. Hamilton-Jacobi reachability: A brief overview and recent advances. In CDC.Google ScholarGoogle Scholar
  6. Christopher W. Brown. 2003. QEPCAD B: A Program for Computing with Semi-Algebraic Sets Using CADs. SIGSAM Bull. 37, 4 (dec 2003), 97–108. https://doi.org/10.1145/968708.968710Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2012. Taylor Model Flowpipe Construction for Non-linear Hybrid Systems. In RTSS.Google ScholarGoogle Scholar
  8. Xin Chen, Sriram Sankaranarayanan, and Erika Ábrahám. 2014. Under-approximate Flowpipes for Non-linear Continuous Systems. In Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design (Lausanne, Switzerland) (FMCAD ’14). FMCAD Inc, Austin, Texas, 59–66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Chen, S. Sankaranarayanan, and E. Abraham. 2014. Under-approximate Flowpipes for Non-linear Continuous Systems. In FMCAD.Google ScholarGoogle Scholar
  10. George E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In Automata Theory and Formal Languages, H. Brakhage (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 134–183.Google ScholarGoogle Scholar
  11. Andreas Dolzmann and Thomas Sturm. 1997. REDLOG: Computer Algebra Meets Computer Logic. SIGSAM Bull. 31, 2 (jun 1997), 2–9. https://doi.org/10.1145/261320.261324Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexandre Donzé. 2013. On Signal Temporal Logic. In RV(LNCS, Vol. 8174). Springer.Google ScholarGoogle Scholar
  13. Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410, 42 (2009).Google ScholarGoogle Scholar
  14. Sicun Gao, Soonho Kong, and Edmund Clarke. 2013. dReal: An SMT Solver for Nonlinear Theories of the Reals (Tool Paper). In CADE (Conference on Automated Deduction).Google ScholarGoogle Scholar
  15. Isabel Garcia-Contreras, V. K. Hari Govind, Sharon Shoham, and Arie Gurfinkel. 2023. Fast Approximations of Quantifier Elimination. In Computer Aided Verification, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, Cham, 64–86.Google ScholarGoogle Scholar
  16. Yeting Ge and Leonardo de Moura. 2009. Complete instantiation for quantified formulas in satisfiability modulo theories. In Computer Aided Verification. 306–320.Google ScholarGoogle Scholar
  17. A. Girard, C. Le Guernic, and O. Maler. 2006. Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs. In HSCC.Google ScholarGoogle Scholar
  18. Joseph D. Gleason, Abraham P. Vinod, and Meeko M. K. Oishi. 2017. Underapproximation of reach-avoid sets for discrete-time stochastic systems via Lagrangian methods. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (Melbourne, Australia). IEEE Press, 4283–4290. https://doi.org/10.1109/CDC.2017.8264291Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Alexandre Goldsztejn. 2012. Modal Intervals Revisited, Part 1: A Generalized Interval Natural Extension. Reliable Computing 16 (2012), 130–183.Google ScholarGoogle Scholar
  20. Alexandre Goldsztejn. 2012. Modal Intervals Revisited, Part 2: A Generalized Interval Mean Value Extension. Reliable Computing 16 (2012), 184–209.Google ScholarGoogle Scholar
  21. A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert. 2005. Modal intervals revisited: a mean-value extension to generalized intervals. In QCP’05.Google ScholarGoogle Scholar
  22. A. Goldsztejn and L. Jaulin. 2010. Inner Approximation of the Range of Vector-Valued Functions. Reliable Computing 14 (2010).Google ScholarGoogle Scholar
  23. Eric Goubault and Sylvie Putot. 2019. Inner and outer reachability for the verification of control systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019, Necmiye Ozay and Pavithra Prabhakar (Eds.). ACM, 11–22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eric Goubault and Sylvie Putot. 2020. Robust Under-Approximations and Application to Reachability of Non-Linear Control Systems With Disturbances. IEEE Control. Syst. Lett. 4, 4 (2020), 928–933. https://doi.org/10.1109/LCSYS.2020.2997261Google ScholarGoogle ScholarCross RefCross Ref
  25. Eric Goubault and Sylvie Putot. 2021. Tractable higher-order under-approximating AE extensions for non-linear systems. In 7th IFAC Conference on Analysis and Design of Hybrid Systems, ADHS 2021, Brussels, Belgium, July 7-9, 2021. 235–240. https://doi.org/10.1016/j.ifacol.2021.08.504Google ScholarGoogle ScholarCross RefCross Ref
  26. Eric Goubault and Sylvie Putot. 2023. Guaranteed approximations of arbitrarily quantified reachability problems. arXiv:2309.07662 (2023).Google ScholarGoogle Scholar
  27. C. Le Guernic and A. Girard. 2009. Reachability Analysis of Hybrid Systems Using Support Functions. In CAV.Google ScholarGoogle Scholar
  28. Wolfram Research, Inc.[n. d.]. Mathematica, Version 13.1. https://www.wolfram.com/mathematica Champaign, IL, 2022.Google ScholarGoogle Scholar
  29. Mats Jirstrand. 1997. Nonlinear Control System Design by Quantifier Elimination. J. Symb. Comput. 24 (1997), 137–152.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Niklas Kochdumper and Matthias Althoff. 2020. Computing Non-Convex Inner-Approximations of Reachable Sets for Nonlinear Continuous Systems. In 2020 59th IEEE Conference on Decision and Control (CDC). 2130–2137. https://doi.org/10.1109/CDC42340.2020.9304022Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. B. Kurzhanski and P. Varaiya. 2000. Ellipsoidal Techniques for Reachability Analysis. In HSCC.Google ScholarGoogle Scholar
  32. Steven M. Lavalle. 2006. Planning Algorithms. Cambridge University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Li, P.N. Mosaad, M. Fränzle, Z. She, and B. Xue. 2018. Safe over- and under- approximation of reachable sets for autonomous dynamical systems. In FORMATS. 252––270.Google ScholarGoogle Scholar
  34. K. Makino and M. Berz. 2003. Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math (2003).Google ScholarGoogle Scholar
  35. Kostas Margellos and John Lygeros. 2011. Hamilton-Jacobi Formulation for Reach-Avoid Differential Games.IEEE Trans. Automat. Contr. 56, 8 (2011), 1849–1861.Google ScholarGoogle ScholarCross RefCross Ref
  36. Thomas Le Mézo, Luc Jaulin, and Benoît Zerr. 2018. Bracketing the solutions of an ordinary differential equation with uncertain initial conditions. Appl. Math. Comput. 318 (2018).Google ScholarGoogle Scholar
  37. I. Mitchell, A. Bayen, and C. Tomlin. 2005. A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Automat. Control 50, 7 (2005), 947––957.Google ScholarGoogle ScholarCross RefCross Ref
  38. Ian M. Mitchell. 2007. Comparing Forward and Backward Reachability as Tools for Safety Analysis. In Hybrid Systems: Computation and Control, Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 428–443.Google ScholarGoogle Scholar
  39. M. Neher, K. R. Jackson, and N. S. Nedialkov. 2007. On Taylor model based integration of ODEs. SIAM J. Numer. Anal 45 (2007).Google ScholarGoogle Scholar
  40. Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh, and Taylor T. Johnson. 2017. Hyperproperties of Real-Valued Signals. In MEMOCODE ’17.Google ScholarGoogle Scholar
  41. M. A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. 2012. Reachability Analysis of Polynomial Systems Using Linear Programming Relaxations(LNCS, Vol. 7561).Google ScholarGoogle Scholar
  42. Jacob T Schwartz and Micha Sharir. 1983. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4, 3 (1983), 298–351. https://doi.org/10.1016/0196-8858(83)90014-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. K. Siaulys and J. M. Maciejowski. 2016. Verification of model predictive control laws using weispfenning’s quantifier elimination by virtual substitution algorithm. In 2016 IEEE 55th Conference on Decision and Control (CDC). 1452–1457. https://doi.org/10.1109/CDC.2016.7798471Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Thomas Sturm and Ashish Tiwari. 2011. Verification and synthesis using real quantifier elimination. In Proc. ISSAC 2011. ACM Press, San Jose, United States, 329. https://doi.org/10.1145/1993886.1993935Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Tarski. 1948. A decision method for elementary algebra and geometry. Technical Report. Rand Corporation.Google ScholarGoogle Scholar
  46. Volker Weispfenning. 1993. Quantifier Elimination for Real Algebra - the Quadratic Case and Beyond. AAECC 8 (1993), 85–101.Google ScholarGoogle ScholarCross RefCross Ref
  47. Mark Wetzlinger and Matthias Althoff. 2023. Backward Reachability Analysis of Perturbed Continuous-Time Linear Systems Using Set Propagation. CoRR abs/2310.19083 (2023). https://doi.org/10.48550/ARXIV.2310.19083 arXiv:2310.19083Google ScholarGoogle ScholarCross RefCross Ref
  48. B. Xue, Z. She, and A. Easwaran. 2016. Under-Approximating Backward Reachable Sets by Polytopes. In CAV.Google ScholarGoogle Scholar

Index Terms

  1. Inner and outer approximate quantifier elimination for general reachability problems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '24: Proceedings of the 27th ACM International Conference on Hybrid Systems: Computation and Control
          May 2024
          307 pages
          ISBN:9798400705229
          DOI:10.1145/3641513

          Copyright © 2024 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 May 2024

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate153of373submissions,41%
        • Article Metrics

          • Downloads (Last 12 months)11
          • Downloads (Last 6 weeks)11

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format