skip to main content
research-article

moduli: A Disaggregated Data Management Architecture for Data-Intensive Workflows

Published:20 February 2024Publication History
Skip Abstract Section

Abstract

As companies store, process, and analyse bigger and bigger volumes of highly heterogeneous data, novel research and technological challenges are emerging. Traditional and rigid data integration and processing techniques become inadequate for a new class of data-intensive applications. There is a need for new architectural, software, and hardware solutions that are capable of providing dynamic data integration, assuring high data quality, and offering safety and security mechanisms, while facilitating online data analysis. In this context, we propose moduli, a novel disaggregated data management reference architecture for data-intensive applications that organizes data processing in various zones. Working on moduli allowed us also to identify open research and technological challenges.

References

  1. Ahmadov, A., Thiele, M., Eberius, J., Lehner, W., and Wrembel, R. 2015. Towards a hybrid imputation approach using web tables. In IEEE/ACM Int. Symposium on Big Data Computing (BDC). IEEE, 21--30.Google ScholarGoogle Scholar
  2. Ali, S. M. F. and Wrembel, R. 2017. From conceptual design to performance optimization of ETL workflows: current state of research and open problems. The VLDB Journal 26, 6, 777--801.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amer-Yahia, S., Koutrika, G., Braschler, M., Calvanese, D., Lanti, D., Lücke-Tieke, H., Mosca, A., de Farias, T. M., Papadopoulos, D., Patil, Y., Rull, G., Smith, E., Skoutas, D., Subramanian, S., and Stockinger, K. 2021. INODE: building an end-to-end data exploration system in practice. SIGMOD Record 50, 4, 23--29.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Backasch, R., Hempel, G., Werner, S., Groppe, S., and Pionteck, T. 2014. Identifying homogenous reconfigurable regions in heterogeneous fpgas for module relocation. In International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico.Google ScholarGoogle Scholar
  5. Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D. 2010. The security of machine learning. Mach. Learn. 81, 2, 121--148.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Batini, C., Cappiello, C., Francalanci, C., and Maurino, A. 2009. Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41, 3, 16:1--16:52.Google ScholarGoogle Scholar
  7. Batini, C. and Scannapieco, M. 2016. Data and Information Quality - Dimensions, Principles and Techniques. Data-Centric Systems and Applications. Springer.Google ScholarGoogle Scholar
  8. Bleiholder, J. and Naumann, F. 2009. Data Fusion. ACM Comput. Surv. 41, 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Boeschoten, S., Catal, C., Tekinerdogan, B., Lommen, A., and Blokland, M. 2023. The automation of the development of classification models and improvement of model quality using feature engineering techniques. Expert Systems with Applications 213, Part, 118912.Google ScholarGoogle Scholar
  10. Caro, M. C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., and Coles, P. J. 2022. Generalization in quantum machine learning from few training data. Nat. Commun. 13, 1.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ceravolo, P., Azzini, A., Angelini, M., Catarci, T., Cudré-Mauroux, P., Damiani, E., Mazak, A., van Keulen, M., Jarrar, M., Santucci, G., Sattler, K., Scannapieco, M., Wimmer, M., Wrembel, R., and Zaraket, F. A. 2018. Big data semantics. J. Data Semant. 7, 2, 65--85.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ceravolo, P. and Bellini, E. 2019. Towards configurable composite data quality assessment. In IEEE Conf. on Business Informatics (CBI). IEEE, 249--257.Google ScholarGoogle Scholar
  13. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., and Stefanidis, K. 2021. An overview of end-to-end entity resolution for big data. ACM Computing Surveys 53, 6, 127:1--127:42.Google ScholarGoogle Scholar
  14. Chu, X., Ilyas, I. F., Krishnan, S., and Wang, J. 2016. Data cleaning: Overview and emerging challenges. In Int. Conf. on Management of Data (SIGMOD), F. Özcan, G. Koutrika, and S. Madden, Eds. ACM, 2201--2206.Google ScholarGoogle Scholar
  15. Codd, E. F. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6, 377--387.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Console, M. and Lenzerini, M. 2014. Data quality in ontology-based data access: The case of consistency. In AAAI Conf. on Artificial Intelligence. AAAI Press, 1020--1026.Google ScholarGoogle Scholar
  17. Cudré-Mauroux, P. 2020. Leveraging knowledge graphs for big data integration: the XI pipeline. Semantic Web 11, 1, 13--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dasgupta, D. 2021. Delta lake: New hybrid between data lake & data warehouse.Google ScholarGoogle Scholar
  19. Dong, X. L. and Srivastava, D. 2013. Big data integration. VLDB Endow. 6, 11, 1188--1189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dong, X. L. and Srivastava, D. 2015. Big Data Integration. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  21. Durner, D., Chandramouli, B., and Li, Y. 2021. Crystal: A unified cache storage system for analytical databases. VLDB Endow. 14, 11, 2432--2444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Rana, O. F., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., and Ranjan, R. 2023. Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55, 9, 194:1--194:33.Google ScholarGoogle Scholar
  23. Eppler, M. and Helfert, M. 2004. A classification and analysis of data quality costs. In Int. Conf. on Information Quality. MIT, 311--325.Google ScholarGoogle Scholar
  24. Farid, M. H., Roatis, A., Ilyas, I. F., Hoffmann, H., and Chu, X. 2016. CLAMS: bringing quality to data lakes. In Int. Conf. on Management of Data (SIGMOD), F. Özcan, G. Koutrika, and S. Madden, Eds. ACM, 2089--2092.Google ScholarGoogle Scholar
  25. Frénay, B. and Verleysen, M. 2014. Classification in the presence of label noise: A survey. IEEE Trans. Neural Networks Learn. Syst. 25, 5, 845--869.Google ScholarGoogle ScholarCross RefCross Ref
  26. Führing, P. and Naumann, F. 2007. Emergent data quality annotation and visualization. In Int. Conf. on Information Quality. MIT, 424--430.Google ScholarGoogle Scholar
  27. Ghosh, D., Gupta, P., Mehrotra, S., and Sharma, S. 2022. A case for enrichment in data management systems. SIGMOD Rec. 51, 2, 38--43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Glavic, B., Siddique, J., Andritsos, P., and Miller, R. J. 2013. Provenance for Data Mining. In Worksh. on the Theory and Practice of Provenance (TaPP).Google ScholarGoogle Scholar
  29. Golshan, B., Halevy, A., Mihaila, G., and Tan, W.-C. 2017. Data integration: After the teenage years. In ACM SIGMOD-SIGACT-SIGAI Symp. on Principles of Database Systems (PODS). 101--106.Google ScholarGoogle Scholar
  30. Groppe, S. 2020. Emergent models, frameworks, and hardware technologies for big data analytics. The Journal of Supercomputing 76, 3, 1800--1827.Google ScholarGoogle ScholarCross RefCross Ref
  31. Groppe, S., Groppe, J., Çalikyilmaz, U., Winker, T., and Gruenwald, L. 2022. Quantum data management and quantum machine learning for data management: State-of-the-art and open challenges. In EAI Int. Conf. on Intelligent Systems and Machine Learning (EAI ICISML).Google ScholarGoogle Scholar
  32. Gu, Z., Lanti, D., Mosca, A., Xiao, G., Xiong, J., and Calvanese, D. 2022. Ontology-based data federation. In Int. Joint Conference on Knowledge Graphs (IJCKG). ACM, 10--19.Google ScholarGoogle Scholar
  33. Günnemann, S. 2017. Machine learning meets databases. Datenbank-Spektrum 17, 1, 77--83.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hai, R., Quix, C., and Jarke, M. 2021. Data lake concept and systems: a survey. CoRR abs/2106.09592.Google ScholarGoogle Scholar
  35. Harby, A. A. and Zulkernine, F. H. 2022. From data warehouse to lakehouse: A comparative review. In IEEE Int. Conf. on Big Data. IEEE, 389--395.Google ScholarGoogle Scholar
  36. Haug, A., Zachariassen, F., and Van Liempd, D. 2011. The costs of poor data quality. Journal of Industrial Engineering and Management (JIEM) 4, 2, 168--193.Google ScholarGoogle ScholarCross RefCross Ref
  37. He, X., Zhao, K., and Chu, X. 2021. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 212, 106622.Google ScholarGoogle ScholarCross RefCross Ref
  38. Herschel, M., Diestelkämper, R., and Ben Lahmar, H. 2017. A survey on provenance: What for? What form? What from? VLDB J. 26, 6, 881--906.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., and McClean, J. R. 2021. Power of data in quantum machine learning. Nat. Commun. 12, 1.Google ScholarGoogle Scholar
  40. Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I. P., and Tygar, J. D. 2011. In ACM Worksh. on Security and Artificial Intelligence (AISec). ACM, 43--58.Google ScholarGoogle Scholar
  41. Ilyas, I. F. and Rekatsinas, T. 2022. Machine learning and data cleaning: Which serves the other? ACM J. Data Inf. Qual. 14, 3, 13:1--13:11.Google ScholarGoogle Scholar
  42. Jouppi, N., Young, C., Patil, N., and Patterson, D. 2018. Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38, 3, 10--19.Google ScholarGoogle ScholarCross RefCross Ref
  43. Juran, J. and Godfrey, A. 1999. Juran's Quality Handbook. McGraw Hill.Google ScholarGoogle Scholar
  44. Karkouch, A., Mousannif, H., Moatassime, H. A., and Noël, T. 2016. Data quality in internet of things: A state-of-the-art survey. J. Netw. Comput. Appl. 73, 57--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Kohavi, R., Mason, L., Parekh, R., and Zheng, Z. 2004. Lessons and challenges from mining retail e-commerce data. Mach. Learn. 57, 1-2, 83--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Kreuzberger, D., Kühl, N., and Hirschl, S. 2023. Machine learning operations (mlops): Overview, definition, and architecture. IEEE Access 11, 31866--31879.Google ScholarGoogle ScholarCross RefCross Ref
  47. Lee, S., Lerner, A., Ryser, A., Park, K., Jeon, C., Park, J., Song, Y. H., and Cudré-Mauroux, P. 2022. X-SSD: A storage system with native support for database logging and replication. In Int. Conf. on Management of Data (SIGMOD). ACM, 988--1002.Google ScholarGoogle Scholar
  48. Lerner, A., Hussein, R., and Cudré-Mauroux, P. 2019. The case for network accelerated query processing. In Biennial Conf. on Innovative Data Systems Research (CIDR). www.cidrdb.org.Google ScholarGoogle Scholar
  49. Lerner, A., Jasny, M., Jepsen, T., Binnig, C., and Cudré-Mauroux, P. 2022. DBMS annihilator: A high-performance database workload generator in action. VLDB Endow. 15, 12, 3682--3685.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Li, Z., Sharaf, M. A., Sitbon, L., Sadiq, S. W., Indulska, M., and Zhou, X. 2014. A web-based approach to data imputation. World Wide Web 17, 5, 873--897.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Liu, Z., Park, J., Rekatsinas, T., and Tzamos, C. 2021. On robust mean estimation under coordinate-level corruption. In Int. Conf. on Machine Learning ICML, M. Meila and T. Zhang, Eds. Vol. 139. PMLR, 6914--6924.Google ScholarGoogle Scholar
  52. Makinen, S., Skogstrom, H., Laaksonen, E., and Mikkonen, T. 2021. Who needs MLOps: What data scientists seek to accomplish and how can MLOps help? In IEEE/ACM Worksh. on AI Engineering - Software Engineering for AI (WAIN). IEEE.Google ScholarGoogle Scholar
  53. Mansour, E., Srinivas, K., and Hose, K. 2021. Federated Data Science to Break Down Silos. SIGMOD Rec. 50, 4, 16--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mauri, L. and Damiani, E. 2022. Estimating degradation of machine learning data assets. ACM J. Data Inf. Qual. 14, 2, 9:1--9:15.Google ScholarGoogle Scholar
  55. Mavlyutov, R., Curino, C., Asipov, B., and Cudré-Mauroux, P. 2017. Dependency-driven analytics: A compass for uncharted data oceans. In Biennial Conf. on Innovative Data Systems Research (CIDR). www.cidrdb.org.Google ScholarGoogle Scholar
  56. McMahan, B. and Ramage, D. 2017. Federated learning: Collaborative machine learning without centralized training data.Google ScholarGoogle Scholar
  57. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. 2022. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 6, 115:1--115:35.Google ScholarGoogle Scholar
  58. Mezzanzanica, M., Boselli, R., Cesarini, M., and Mercorio, F. 2015. A model-based approach for developing data cleansing solutions. ACM J. Data Inf. Qual. 5, 4, 13:1--13:28.Google ScholarGoogle Scholar
  59. Miao, X., Gao, Y., Guo, S., and Liu, W. 2018. Incomplete data management: a survey. Frontiers Comput. Sci. 12, 1, 4--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Nadal, S., Abelló, A., Romero, O., Vansummeren, S., and Vassiliadis, P. 2023. Graph-driven federated data management. IEEE Trans. Knowl. Data Eng. 35, 1, 509--520.Google ScholarGoogle Scholar
  61. Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. 2019a. Data lake management: Challenges and opportunities. VLDB Endow. 12, 12, 1986--1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. 2019b. Data lake management: Challenges and opportunities. VLDB Endow. 12, 12, 1986--1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Natarajan, N., Dhillon, I. S., Ravikumar, P., and Tewari, A. 2013. Learning with noisy labels. In Annual Conf. on Neural Information Processing Systems (NIPS). 1196--1204.Google ScholarGoogle Scholar
  64. Nath, R. P. D., Romero, O., Pedersen, T. B., and Hose, K. 2022. High-level ETL for semantic data warehouses. Semantic Web 13, 1, 85--132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Nayak, N., Rehfeld, J., Winker, T., Warnke, B., Çalikyilmaz, U., and Groppe, S. 2023. Constructing optimal bushy join trees by solving qubo problems on quantum hardware and simulators. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments (BiDEDE), Seattle, WA, USA.Google ScholarGoogle Scholar
  66. Ng, D., Lan, X., Yao, M. M.-S., Chan, W. P., and Feng, M. 2021. Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets. Quantitative Imaging in Medicine and Surgery 11, 2, 852--857.Google ScholarGoogle ScholarCross RefCross Ref
  67. Northcutt, C. G., Athalye, A., and Mueller, J. 2021. Pervasive label errors in test sets destabilize machine learning benchmarks. In Neural Information Processing Systems Track on Datasets and Benchmarks 1, J. Vanschoren and S. Yeung, Eds.Google ScholarGoogle Scholar
  68. Noy, N. F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., and Taylor, J. 2019. Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62, 8, 36--43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., and Marr, D. 2016. Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC. In Int. Conf. on Field Programmable Logic and Applications (FPL). IEEE, 1--4.Google ScholarGoogle Scholar
  70. Paggi, H., Soriano, J., Lara, J. A., and Damiani, E. 2021. Towards the definition of an information quality metric for information fusion models. Comput. Electr. Eng. 89.Google ScholarGoogle Scholar
  71. Park, K., Saur, K., Banda, D., Sen, R., Interlandi, M., and Karanasos, K. 2022. End-to-end optimization of machine learning prediction queries. In Int. Conf. on Management of Data (SIGMOD). ACM.Google ScholarGoogle Scholar
  72. Psallidas, F., Zhu, Y., Karlas, B., Henkel, J., Interlandi, M., Krishnan, S., Kroth, B., Emani, K. V., Wu, W., Zhang, C., Weimer, M., Floratou, A., Curino, C., and Karanasos, K. 2022. Data science through the looking glass: Analysis of millions of github notebooks and ML.NET pipelines. SIGMOD Rec. 51, 2, 30--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ratner, A. J., Sa, C. D., Wu, S., Selsam, D., and Ré, C. 2016. Data programming: Creating large training sets, quickly. In Annual Conf. on Neural Information Processing Systems (NIPS), D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, Eds. 3567--3575.Google ScholarGoogle Scholar
  74. Rebentrost, P., Mohseni, M., and Lloyd, S. 2014. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503.Google ScholarGoogle ScholarCross RefCross Ref
  75. Romero, O. and Wrembel, R. 2020. Data engineering for data science: Two sides of the same coin. In Int. Conf. Big Data Analytics and Knowledge Discovery (DAWAK). LNCS, vol. 12393. Springer, 157--166.Google ScholarGoogle Scholar
  76. Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K., Angles, R., Aref, W. G., Arenas, M., Besta, M., Boncz, P. A., Daudjee, K., Valle, E. D., Dumbrava, S., Hartig, O., Haslhofer, B., Hegeman, T., Hidders, J., Hose, K., Iamnitchi, A., Kalavri, V., Kapp, H., Martens, W., Özsu, M. T., Peukert, E., Plantikow, S., Ragab, M., Ripeanu, M., Salihoglu, S., Schulz, C., Selmer, P., Sequeda, J. F., Shinavier, J., Szárnyas, G., Tommasini, R., Tumeo, A., Uta, A., Varbanescu, A. L., Wu, H., Yakovets, N., Yan, D., and Yoneki, E. 2021. The future is big graphs: a community view on graph processing systems. Commun. ACM 64, 9, 62--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Sattler, K.-U. 2009. Data Quality Dimensions. Springer, 612--615.Google ScholarGoogle Scholar
  78. Sessions, V. and Valtorta, M. 2009. Towards a method for data accuracy assessment utilizing a bayesian network learning algorithm. ACM J. Data Inf. Qual. 1, 3, 14:1--14:34.Google ScholarGoogle Scholar
  79. Stedman, C. 2022. What is data governance and why does it matter? https://www.techtarget.com/searchdatamanagement/definition/data-governance.Google ScholarGoogle Scholar
  80. Stein, D. 2022. Open sourcing feathr - linkedin's feature store for productive machine learning.Google ScholarGoogle Scholar
  81. Stonebraker, M. and Ilyas, I. F. 2018. Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41, 2, 3--9.Google ScholarGoogle Scholar
  82. Suriarachchi, I. and Plale, B. 2016. Provenance as essential infrastructure for data lakes. In Int. Provenance and Annotation Worksh. (IPAW). LNCS, vol. 9672. Springer, 178--182.Google ScholarGoogle Scholar
  83. Tagliabue, J., Greco, C., and Bigon, L. 2023. Building a serverless data lakehouse from spare parts. In Workshops at the Int. Conf. on Very Large Data Bases VLDB. CEUR Workshop Proceedings, vol. 3462. CEUR-WS.org.Google ScholarGoogle Scholar
  84. Terrizzano, I. G., Schwarz, P. M., Roth, M., and Colino, J. E. 2015. Data wrangling: The challenging yourney from the wild to the lake. In Biennial Conf. on Innovative Data Systems Research (CIDR).Google ScholarGoogle Scholar
  85. Villamizar, N., Wahrman, J., and Villasana, M. 2023. Comparing vectorization techniques, supervised and unsupervised classification methods for scientific publication categorization in the UNESCO taxonomy. In IFIP WG 12.5 Int. Conf. Artificial Intelligence Applications and Innovations AIAI. IFIP Advances in Information and Communication Technology, vol. 675. Springer, 356--368.Google ScholarGoogle Scholar
  86. Wand, Y. and Wang, R. Y. 1996. Anchoring data quality dimensions in ontological foundations. Commun. ACM 39, 11, 86--95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Wang, R. Y., Storey, V. C., and Firth, C. P. 1995. A framework for analysis of data quality research. IEEE Trans. Knowl. Data Eng. 7, 4, 623--640.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Wang, R. Y. and Strong, D. M. 1996. Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst. 12, 4, 5--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Ward, J. S. and Barker, A. 2013. Undefined by data: A survey of big data definitions. CoRR abs/1309.5821.Google ScholarGoogle Scholar
  90. Wiederhold, G. 1992. Mediators in the architecture of future information systems. Computer 25, 3, 38--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Winker, T., Groppe, S., Uotila, V., Yan, Z., Lu, J., Franz, M., and Mauerer, W. 2023. Quantum machine learning: Foundation, new techniques, and opportunities for database research. In Int. Conf. on Management of Data (SIGMOD).Google ScholarGoogle Scholar
  92. Winker, T., Çalikyilmaz, U., Gruenwald, L., and Groppe, S. 2023. Quantum machine learning for join order optimization using variational quantum circuits. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments (BiDEDE), Seattle, WA, USA.Google ScholarGoogle Scholar
  93. Wrembel, R. 2023. Data integration revitalized: From data warehouse through data lake to data mesh. In Int. Conf. Database and Expert Systems Applications DEXA. Lecture Notes in Computer Science, vol. 14146. Springer, 3--18.Google ScholarGoogle Scholar
  94. Xu, L., Qiu, S., Yuan, B., Jiang, J., Renggli, C., Gan, S., Kara, K., Li, G., Liu, J., Wu, W., Ye, J., and Zhang, C. 2022. In-database machine learning with CorgiPile: Stochastic gradient descent without full data shuffle. In Int. Conf. on Management of Data (SIGMOD).Google ScholarGoogle Scholar
  95. Çalikyilmaz, U., Groppe, S., Groppe, J., Winker, T., Prestel, S., Shagieva, F., Arya, D., Preis, F., and Gruenwald, L. 2023. Opportunities for quantum acceleration of databases: Optimization of queries and transaction schedules. Proc. VLDB Endow. 16, 9, 2344--2353.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. moduli: A Disaggregated Data Management Architecture for Data-Intensive Workflows
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM SIGWEB Newsletter
          ACM SIGWEB Newsletter  Volume 2024, Issue Winter
          Winter 2024
          33 pages
          ISSN:1931-1745
          EISSN:1931-1435
          DOI:10.1145/3643603
          Issue’s Table of Contents

          Copyright © 2024 Copyright is held by the owner/author(s)

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 February 2024

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)69
          • Downloads (Last 6 weeks)34

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader