skip to main content
10.1145/3644116.3644223acmotherconferencesArticle/Chapter ViewAbstractPublication PagesisaimsConference Proceedingsconference-collections
research-article

Dynamic fMRI specific complexity classification of MRI-negative temporal lobe epilepsy combined with machine learning: Specific classification of epilepsySpecific complexity classification of MRI-negative temporal lobe epilepsy

Published:05 April 2024Publication History

ABSTRACT

The absence of visible indicators in MRI-negative temporal lobe epilepsy (NTLE) presents challenges for analysis. Given its dynamic nature, NTLE could potentially be detected using dynamic functional biomarkers. For more precise, an algorithm jointing graph theory of brain network and dynamic complexity computation was proposed based on resting-state functional MRI (rfMRI). Machine learning of relevance vector machine (RVM) validated this proposal. 40 TLE patients, equal in MRI-negative and MRI-positive, and 20 healthy people underwent rfMRI; after estimated by time-varying parameter regression model at every time-point of rfMRI; The dynamic brain network formed by sparsity topology is quantified by graph theory local index, whose time series were evaluated by complexity of sample entropy (SE) model; by SE, specific or unique brain regions were successively extracted for NTLE, respectively relative to health or MRI-positive TLE, whose SEs were input into RVM, and effectiveness was validated by average classification accuracy. By integrating algorithm, 4 specific brain regions for NTLE were extracted, e.g., caudal superior parietal lobule, ventral agranular insula, nucleus accumbens and lateral prefrontal thalamus. Interestingly, lateral prefrontal thalamus was unique for NTLE. By the RVM, average specific classification accuracy gained 87.50%/75.00% respectively.

References

  1. Milton, J. and Jung, P. 2003. Epilepsy as a dynamic disease. Springer Science & Business Media.Google ScholarGoogle Scholar
  2. Moraes, M.F.D., de Castro Medeiros, D., Mourao, F.A.G., Cancado, S.A.V. and Cota, V.R. 2021. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy & Behavior,121 (August 2021), 106838. https://doi.org/10.1016/j.yebeh.2019.106838Google ScholarGoogle ScholarCross RefCross Ref
  3. González, H.F.J., Narasimhan, S., Johnson, G.W., Wills, K.E., Haas, K.F., Konrad, P.E., Chang, C., Morgan, V.L., Rubinov, M. and Englot, D.J. 2021. Role of the nucleus basalis as a key network node in temporal lobe epilepsy. Neurology,96,9 (March 2021), e1334-e1346. https://doi.org/10.1212/wnl.0000000000011523Google ScholarGoogle ScholarCross RefCross Ref
  4. Wang, Z. and Qi, J. 2006. Current status of MRI research on hippocampal sclerosis in temporal lobe epilepsy. International Journal of Medical Radiology,29,001 (March 2006), 20-24. https://doi.org/10.3784/j.issn.1674-1897.2006.01.005Google ScholarGoogle ScholarCross RefCross Ref
  5. Bruxel, E.M., Bruno, D.C.F., do Canto, A.M., Geraldis, J.C., Godoi, A.B., Martin, M. and Lopes-Cendes, I. 2021. Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure,90 (August 2021), 34-50. https://doi.org/10.1016/j.seizure.2021.03.002Google ScholarGoogle ScholarCross RefCross Ref
  6. Muhlhofer, W., Tan, Y.L., Mueller, S.G. and Knowlton, R. 2017. MRI‐negative temporal lobe epilepsy—What do we know? Epilepsia,58,5 (March 2017), 727-742. https://doi.org/10.1111/epi.13699Google ScholarGoogle ScholarCross RefCross Ref
  7. You, X., Zachery, A.N., Fanto, E.J., Norato, G., Germeyan, Sierra C., Emery, E.J., Sepeta, L.N., Berl, M.M., Black, C.L., Wiggs, E., Zaghloul, K., Inati, S.K., Gaillard, W.D. and Theodore, W.H. 2019. fMRI prediction of naming change after adult temporal lobe epilepsy surgery: Activation matters. Epilepsia,60,3. February 2019, 527-538. https://doi.org/10.1111/epi.14656Google ScholarGoogle ScholarCross RefCross Ref
  8. Borràs-Ferrís, L., Pérez-Ramírez, Ú. and Moratal, D. 2019. Link-level functional connectivity neuroalterations in autism spectrum disorder: A developmental resting-state fMRI study. Diagnostics,9,1 (March 2019), 32. https://doi.org/10.3390/diagnostics9010032Google ScholarGoogle ScholarCross RefCross Ref
  9. Núez, P., Poza, J., Gómez, C., Rodríguez-González, V. and Hornero, R. 2021. Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum. NeuroImage,232,4 (May 2021), 117898. https://doi.org/10.1016/j.neuroimage.2021.117898Google ScholarGoogle ScholarCross RefCross Ref
  10. Preti, M., Bolton, T. and Van De Ville, D. 2017. The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage,160 (October 2017), 41-54. https://doi.org/10.1016/j.neuroimage.2016.12.061Google ScholarGoogle ScholarCross RefCross Ref
  11. Liao, W., Wu, G.R., Qiang, X., Ji, G.J., Zhang, Z., Zang, Y.F. and Lu, G. 2014. DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connectivity,4,10 (December 2014), 780. https://doi.org/10.1089/brain.2014.0253Google ScholarGoogle ScholarCross RefCross Ref
  12. Guo, X., He, C., Duan, X., Han, S., Xiao, J. and Chen, H. 2019. Aberrant Functional Connectivity Dynamics of Superior Temporal Sulcus and Its Associations with GABA Genes Expression in Autism. Proceedings of the 3rd International Conference on Medical and Health Informatics, (ICMHI’ 19), Association for Computing Machinery, CA, 21–25.Google ScholarGoogle Scholar
  13. Zhang, W., Muravina, V., Azencott, R., Chu, Z.D. and Paldino, M.J. 2018. Mutual information better quantifies brain network architecture in children with epilepsy. Computational and Mathematical Methods in Medicine,2018 (October 2018), 6142898. https://doi.org/10.1155/2018/6142898Google ScholarGoogle ScholarCross RefCross Ref
  14. Jiang, S., Pei, H., Huang, Y., Chen, Y., Liu, L., Li, J., He, H., Yao, D. and Luo, C. 2020. Dynamic temporospatial patterns of functional connectivity and alterations in idiopathic generalized epilepsy. International Journal of Neural Systems,30,12 2050065. https://doi.org/10.1142/s0129065720500653Google ScholarGoogle ScholarCross RefCross Ref
  15. Nyatega, C.O., Qiang, L., Adamu, M.J., Younis, A. and Kawuwa, H.B. 2021. Altered dynamic functional connectivity of cuneus in schizophrenia patients: A resting-state fMRI study. Applied Sciences,11,23 (December 2021), 11392. https://doi.org/10.3390/app112311392Google ScholarGoogle ScholarCross RefCross Ref
  16. Amarantidis, L.C. and Abásolo, D. 2019. Interpretation of entropy algorithms in the context of biomedical signal analysis and their application to EEG analysis in epilepsy. Entropy,21,9 (August 2019), 840. https://doi.org/10.3390/e21090840Google ScholarGoogle ScholarCross RefCross Ref
  17. Zhao, S., Bao, Z., Zhao, X., Xu, M., Li, M. and Yang, Z. 2021. Identification of diagnostic markers for major depressive disorder using machine learning methods. Frontiers in Neuroscience,15 (June 2021), 645998. https://doi.org/10.3389/fnins.2021.645998Google ScholarGoogle ScholarCross RefCross Ref
  18. Caldairou, B., Foit, N., Mutti, C., Fadaie, F., Gill, R., Lee, H., Demerath, T., Urbach, H., Schulze-Bonhage, A., Bernasconi, A. and Bernasconi, N. 2021. An MRI-based machine learning prediction framework to lateralize hippocampal sclerosis in patients with temporal lobe epilepsy. Neurology,97,16 (September 2021), e1583-1593. https://doi.org/10.1212/wnl.0000000000012699Google ScholarGoogle ScholarCross RefCross Ref
  19. Wu, H., Zhang, Z., Xu, Q., Zhang, Q., Chen, G., Yang, F., Sun, K. and Lu, G. 2015. The effect of interphase epileptiform on the brain network of medial temporal lobe epilepsy. Chinese Journal of Magnetic Resonance Imaging 6,11 (September 2015), 801-806. https://doi.org/10.3969/j.issn.1674-8034.2015.11.001Google ScholarGoogle ScholarCross RefCross Ref
  20. Jenkinson, M., Bannister, P., Brady, M. and Smith, S. 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage,17,2 (October 2002), 825-841. https://doi.org/10.1006/nimg.2002.1132Google ScholarGoogle ScholarCross RefCross Ref
  21. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W. and Smith, S.M. 2012. FSL. NeuroImage,62,2 (August 2012), 782-790. https://doi.org/10.1016/j.neuroimage.2011.09.015Google ScholarGoogle ScholarCross RefCross Ref
  22. Thomas Yeo, B., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L. and Polimeni, J.R. 2011. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology,106,3 (September 2011), 1125-1165. https://doi.org/10.1152/jn.00338.2011Google ScholarGoogle ScholarCross RefCross Ref
  23. Wang, D., Li, M., Wang, M., Schoeppe, F., Ren, J., Chen, H., Öngür, D., Brady, R.O., Baker, J.T. and Liu, H. 2018. Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness. Molecular Psychiatry,25,9 (January 2019), 2119-2129. https://doi.org/10.1038/s41380-018-0276-1Google ScholarGoogle ScholarCross RefCross Ref
  24. Smith, S.M. 2000. Fast robust automated brain extraction. Human Brain Mapping,17,3 (September 2002), 143-155. https://doi.org/10.1016/S1053-8119(00)91555-6Google ScholarGoogle ScholarCross RefCross Ref
  25. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S. and Laird, A.R. 2016. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex,26,8 (, August 2016), 3508-3526. https://doi.org/10.1093/cercor/bhw157Google ScholarGoogle ScholarCross RefCross Ref
  26. Achard, S. and Bullmore, E. 2007. Efficiency and cost of economical brain functional networks. PLoS Computational Biology,3,2 (February 2007), e17. https://doi.org/10.1371/journal.pcbi.0030017Google ScholarGoogle ScholarCross RefCross Ref
  27. Omidvarnia, A., Zalesky, A., Mansour L, S., Van De Ville, D., Jackson, G.D. and Pedersen, M. 2021. Temporal complexity of fMRI is reproducible and correlates with higher order cognition. NeuroImage,230 (January 2021), 117760. https://doi.org/10.1016/j.neuroimage.2021.117760Google ScholarGoogle ScholarCross RefCross Ref
  28. Vakamudi, K., Trapp, C., Talaat, K., Gao, K., Sa De La Rocque Guimaraes, B. and Posse, S. 2020. Real-time resting-state functional magnetic resonance imaging using averaged sliding windows with partial correlations and regression of confounding signals. Brain Connectivity,10,8 (October 2020), 448-463. https://doi.org/10.1089/brain.2020.0758Google ScholarGoogle ScholarCross RefCross Ref
  29. Deneux, T. and Faugeras, O. 2006. Using nonlinear models in fMRI data analysis: Model selection and activation detection. NeuroImage,32,4 (October 2006), 1669-1689. https://doi.org/10.1016/j.neuroimage.2006.03.006Google ScholarGoogle ScholarCross RefCross Ref
  30. Zhou, S., Xiong, P., Ren, H., Tan, W., Yan, Y. and Gao, Y. 2020. Aberrant dorsal attention network homogeneity in patients with right temporal lobe epilepsy. Epilepsy & Behavior,111 (October 2020), 107278. https://doi.org/10.1016/j.yebeh.2020.107278Google ScholarGoogle ScholarCross RefCross Ref
  31. Feng, T., Yang, Y., Wei, P., Wang, C., Fan, X., Wang, K., Zhang, H., Shan, Y. and Zhao, G. 2023. The role of the orbitofrontal cortex and insula for prognosis of mesial temporal lobe epilepsy. Epilepsy & Behavior,138 (January 2023), 109003. https://doi.org/10.1016/j.yebeh.2022.109003Google ScholarGoogle ScholarCross RefCross Ref
  32. Vaughan, D., Rayner, G., Tailby, C. and Jackson, G. 2016. MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology,87,18 (September 2016), 1934-1942. https://doi.org/10.1212/wnl.0000000000003289Google ScholarGoogle ScholarCross RefCross Ref
  33. Xu, H., Zhu, H., Luo, L. and Zhang, R. 2020. Altered gray matter volume in MRI-negative focal to bilateral tonic-clonic seizures. Acta Neurologica Belgica,121 (May 2020), 1525-1533. https://doi.org/10.1007/s13760-020-01383-6Google ScholarGoogle ScholarCross RefCross Ref
  34. Quan, W., Xu, Q., Yang, F., Chen, G., Lin, Z., Zhang, Q., Xiao, J., Lu, G. and Zhang, Z. 2017. Impairments of gray matter in MRI-negative epileptic patients with different seizure types. National Medical Journal of China,97,45 (December 2017), 3524-3528. https://doi.org/10.3760/cma.j.issn.0376-2491.2017.45.002Google ScholarGoogle ScholarCross RefCross Ref
  35. Jobst, B. and Cascino, G. 2017. Thalamus as a "hub" to predict outcome after epilepsy surgery. Neurology,88,24 (May 2017), 2246-2247. https://doi.org/10.1212/wnl.0000000000004043Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Dynamic fMRI specific complexity classification of MRI-negative temporal lobe epilepsy combined with machine learning: Specific classification of epilepsySpecific complexity classification of MRI-negative temporal lobe epilepsy

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISAIMS '23: Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science
      October 2023
      1394 pages
      ISBN:9798400708138
      DOI:10.1145/3644116

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 April 2024

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate53of112submissions,47%
    • Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format