skip to main content
10.1145/3647444.3647893acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimmiConference Proceedingsconference-collections
research-article

Simulating Natural Selection with Deep Learning and Genetic Algorithm

Published:13 May 2024Publication History

ABSTRACT

Bridging the realms of biology and artificial intelligence, our study introduces a comprehensive simulation. Within this virtual ecosystem, creatures undergo generational evolution, continually adapting to their dynamic environment. Central to this simulation is an innovative neural network module that equips these creatures with real-time predator sensing and decision-making capabilities. Our approach encompasses diverse creature generation, rigorous fitness evaluation, genetic algorithm-driven evolution, and intricate neural network design. Through extensive experimentation, our findings unveil the intricate dynamics of adaptation and decision-making, illuminating the pivotal role of sensory perception in the evolutionary process. This work significantly advances our comprehension of natural selection and AI-driven decision-making within controlled ecosystems. It not only enriches interdisciplinary insights but also serves as a catalyst for future research endeavors.

References

  1. Sims, K. (2023). Evolving Virtual Creatures. Seminal Graphics Papers: Pushing the Boundaries, Volume 2 (1st ed.). Association for Computing Machinery, New York, NY, USA, Article 73, 699–706. https://doi.org/10.1145/3596711.3596785Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Saito, T., Nishimura, H., & Oka, M. (2022). Comparative studies of evolutionary methods and RL for learning behavior of virtual creatures. In 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 1059–1065. https://doi.org/10.1109/SSCI51031.2022.10022282Google ScholarGoogle ScholarCross RefCross Ref
  3. Devyaterikov, A. P., & Palyanov, A. Y. (2022). A software system for modeling evolution in a population of organisms with vision, interacting with each other in 3D simulator. Vavilov Journal of Genetics and Breeding 26, 8 (2022), 780.Google ScholarGoogle ScholarCross RefCross Ref
  4. Lai, G., Leymarie, F. F., Latham, W., Arita, T., & Suzuki, R. (2021). Virtual Creature Morphology-A Review. In Computer Graphics Forum, vol. 40, no. 2, 659–681. Wiley Online Library. https://doi.org/10.1145/3596711.3596785Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Mendonça, M., Kondo, H. S., Botoni de Souza, L., Palácios, R. H. C., & Paulo Lima Silva de Almeida, J. (2019). Semi-Unknown Environments Exploration Inspired by Swarm Robotics using Fuzzy Cognitive Maps. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-8. https://doi.org/10.1109/FUZZ-IEEE.2019.8858847Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Pilat, M. L, Ito, T., Suzuki, R., & Arita, T. (2012). Evolution of Virtual Creature Foraging in a Physical Environment. In ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference (ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems), 423-430. https://doi.org/10.1162/978-0-262-31050-5-ch056Google ScholarGoogle ScholarCross RefCross Ref
  7. Krcah, P. (2007). Evolving virtual creatures revisited. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '07), 341-341.Google ScholarGoogle Scholar
  8. Umemura, Y., Suzuki, I., Yamamoto, M., & Furukawa, M. (2011). Acquisition of Jumping Behavior on the Artificial Creature under Virtual Physical Environment. In Proceedings of the International Joint Conference on Computational Intelligence (IJCCI), part of the International Joint Conference on Computational Intelligence (ECTA-FCTA), 311-314.Google ScholarGoogle Scholar
  9. Iwadate, K., Suzuki, I., Yamamoto, M., & Furukawa, M. (2011). Behavior Emergence of a Virtual Creature Living in Complex Environments. In Artificial Life and Robotics, vol. 16, 185-189. Springer. https://doi.org/10.1007/s10015-011-0905-0Google ScholarGoogle ScholarCross RefCross Ref
  10. Lehman, J., & Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary computation (GECCO '11). Association for Computing Machinery, New York, NY, USA, 211–218. https://doi.org/10.1145/2001576.2001606Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Lobo, D., & Vico, F. J. (2010). Evolution of Form and Function in a Model of Differentiated Multicellular Organisms with Gene Regulatory Networks. In Biosystems, vol. 102, no. 2-3, 112-123. Elsevier. https://doi.org/10.1016/j.biosystems.2010.08.003Google ScholarGoogle ScholarCross RefCross Ref
  12. Machado, P., Correia, J., & Assunção, F. (2015). Graph-Based Evolutionary Art. In Handbook of Genetic Programming Applications, edited by Gandomi, A. H., Alavi, A. H. & Ryan, C., 3-36. Springer International Publishing. https://doi.org/10.1007/978-3-319-20883-1_1Google ScholarGoogle ScholarCross RefCross Ref
  13. Machado, P., Nunes, H., & Romero, J. (2010). Graph-Based Evolution of Visual Languages. In Applications of Evolutionary Computation, edited by Di Chio , C., 271-280. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12242-2_28Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Pilat, M. L., & Jacob, C. (2008). Creature Academy: A System for Virtual Creature Evolution. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 3289-3297. https://doi.org/10.1109/CEC.2008.4631243Google ScholarGoogle ScholarCross RefCross Ref
  15. Chaumont, N., Egli, R., & Adami, C. (2007). Evolving Virtual Creatures and Catapults. In Artificial Life, vol. 13, no. 2, 139-157. https://doi.org/10.1162/artl.2007.13.2.139Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Miconi, T., & Channon, A. (2006). An Improved System for Artificial Creatures Evolution. In Proceedings of Artificial Life X, 255-261. Citeseer.Google ScholarGoogle Scholar
  17. Miconi, T., & Channon, A. (2005). A Virtual Creatures Model for Studies in Artificial Evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, 565-572 Vol.1. https://doi.org/10.1109/CEC.2005.1554733Google ScholarGoogle ScholarCross RefCross Ref
  18. Min, H. J., & Cho, S. B. (2004). Creative 3D Designs Using Interactive Genetic Algorithm with Structured Directed Graph. In Proceedings of PRICAI 2004: Trends in Artificial Intelligence, edited by Zhang, C., Guesgen, H. W., & Yeap, W. K., 391-400. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-28633-2_42Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Shim, Y. S., Shin, S. Y., & Kim, C. H. (2004). Two-Step Evolution Process for Path-Following Virtual Creatures. In Computer Animations and Social Agents 2004, 85-93.Google ScholarGoogle Scholar
  20. Komosiński, M., & Ulatowski, S. (1999). Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution. In Advances in Artificial Life, edited by Floreano, D., Nicoud, J. D. & Mondada, F., 261-265. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-48304-7_33Google ScholarGoogle ScholarCross RefCross Ref
  21. Heleno, P., & Próspero dos Santos, M. (1998). Artificial Animals in Virtual Ecosystems. In Computer Networks and ISDN Systems, vol. 30, no. 20, 1923-1932. https://doi.org/10.1016/S0169-7552(98)00174-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sims, K. (1994). Evolving Virtual Creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH '94. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sims, K. (1994). Evolving 3D Morphology and Behavior by Competition. In Artificial Life, vol. 1, no. 4, 353-372. https://doi.org/10.1162/artl.1994.1.4.353Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sims, K. (1994). Evolving Virtual Creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH '94. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Simulating Natural Selection with Deep Learning and Genetic Algorithm

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format