skip to main content
10.1145/3649153.3649209acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article
Open access

HLS Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne Instrument

Published: 02 July 2024 Publication History

Abstract

FPGAs are widely deployed on high-energy astrophysics telescopes to preprocess and reduce sensor data read out by front-end electronics. Across instruments, these computational pipelines have similar semantics, sharing common stages such as pedestal subtraction, signal integration, zero-suppression, island detection, and centroiding. However, diverse telescope designs require unique implementations of these algorithms, and the logic is often rewritten from scratch for a new instrument.
As an alternative, High-Level Synthesis (HLS) tools enable these algorithms to be implemented in a high-level language, which eases modifications and enables fast prototyping and deployment. Nonetheless, writing performant HLS code requires augmentation of the code with compiler-specific pragmas. In this work, we illustrate these challenges in the context of the Advanced Particle-astrophysics Telescope (APT), a proposed space-based observatory for gamma-ray sources, and its Antarctic Demonstrator (ADAPT). We implement its front-end algorithms using HLS, demonstrate the use of pragmas to enable optimizations, then explore speed and area tradeoffs, which are especially important given the limited power budget afforded by a satellite instrument. We demonstrate that with HLS, ADAPT will be able to process scintillating tile data from 200 000 gamma-ray events per second.

Supplemental Material

External - FPGA Kernels for Front-End Pre-Processing on ADAPT V1
- In this archive, we present the code and samples of the data we used for our publication titled "HLS Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne Instrument" in ACM Computing Frontiers 2024 - Minimum software dependency: AMD XILINX Vitis HLS 2021.1 - Machine with at least 50GB of free space running Windows 10, 11 or Linux with desktop environment.
The MIT License

References

[1]
C. Aramo, E. Bissaldi, M. Bitossi, et al. 2023. A SiPM multichannel ASIC for high Resolution Cherenkov Telescopes (SMART) developed for the pSCT camera telescope. Nucl. Instrum. Methods Phys. Res. A 1047 (2023), 167839. https://doi.org/10.1016/j.nima.2022.167839
[2]
Imre Bartos and Marek Kowalski. 2017. Multimessenger Astronomy. IOP Publishing. https://doi.org/10.1088/978-0-7503-1369-8
[3]
K Bechtol, S Funk, A Okumura, LL Ruckman, A Simons, H Tajima, J Vandenbroucke, and GS Varner. 2012. TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes. Astroparticle Physics 36, 1 (2012), 156--165. https://doi.org/10.1016/j.astropartphys.2012.05.016
[4]
James Buckley et al. 2021. The Advanced Particle-astrophysics Telescope (APT) Project Status. In Proc. of 37th Int'l Cosmic Ray Conference, Vol. 395. Sissa Medialab, 655:1--655:9. https://doi.org/10.22323/1.395.0655
[5]
S. Caroff, P. Aubert, E. Garcia, G. Maurin, V. Pollet, and T. Vuillaume. 2023. The Real Time Analysis Framework of the Cherenkov Telescope Array's Large-Sized Telescope. In Proc. of 38th International Cosmic Ray Conference, Vol. 444. Sissa Medialab, 616:1--616:9. https://doi.org/10.22323/1.444.0616
[6]
Wenlei Chen, James Buckley, et al. 2023. Simulation of the instrument performance of the Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope in the presence of the MeV background. In Proc. of 38th Int'l Cosmic Ray Conference, Vol. 444. Sissa Medialab, 841:1--841:9. https://doi.org/10.22323/1.444.0841
[7]
Jeng-Lun Chiu, Steven E Boggs, Carolyn A Kierans, Alex Lowell, Clio Sleator, John A Tomsick, Andreas Zoglauer, Mark Amman, Hsiang-Kuang Chang, Che-Yen Chu, et al. 2017. The Compton Spectrometer and Imager (COSI). In Proc. of 35th International Cosmic Ray Conference, Vol. 301. Sissa Medialab, 796:1--796:8.
[8]
CTA Consortium, M Actis, G Agnetta, F Aharonian, A Akhperjanian, J Aleksić, E Aliu, D Allan, I Allekotte, F Antico, et al. 2011. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy 32 (2011), 193--316. https://doi.org/10.1007/s10686-011-9247-0
[9]
E. Delagnes et al. 2011. NECTAr0, a new high speed digitizer ASIC for the Cherenkov Telescope Array. In IEEE Nuclear Science Symposium Conference Record. IEEE, 1457--1462. https://doi.org/10.1109/NSSMIC.2011.6154348
[10]
G Dubus, JL Contreras, S Funk, Y Gallant, T Hassan, J Hinton, Y Inoue, Jürgen Knödlseder, P Martin, N Mirabal, et al. 2013. Surveys with the Cherenkov telescope array. Astroparticle Physics 43 (2013), 317--330. https://doi.org/10.1016/j.astropartphys.2012.05.020
[11]
Clayton J Faber, Steven D Harris, Zhili Xiao, Roger D Chamberlain, and Anthony M Cabrera. 2022. Challenges Designing for FPGAs Using High-Level Synthesis. In Proc. of High Performance Extreme Computing Conference. IEEE, 7 pages. https://doi.org/10.1109/HPEC55821.2022.9926398
[12]
Maya Gokhale, Jan Stone, Jeff Arnold, and Mirek Kalinowski. 2000. Streamoriented FPGA computing in the Streams-C high level language. In Proc. of Symposium on Field-programmable Custom Computing Machines. IEEE, 49--56. https://doi.org/10.1109/FPGA.2000.903392
[13]
J Holder, VA Acciari, E Aliu, T Arlen, M Beilicke, W Benbow, SM Bradbury, JH Buckley, V Bugaev, Y Butt, et al. 2008. Status of the VERITAS Observatory. In AIP Conference Proceedings, Vol. 1085. American Institute of Physics, 657--660. https://doi.org/10.1063/1.3076760
[14]
Y. Htet, M. Sudvarg, J. Buhler, R.D. Chamberlain, and J.H. Buckley. 2023. Localization of Gamma-ray Bursts in a Balloon-Borne Telescope. In Proc. of Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis (SC-W). ACM, 395--398. https://doi.org/10.1145/3624062.3624107
[15]
Ye Htet, Marion Sudvarg, Jeremy Buhler, Roger Chamberlain, Wenlei Chen, James H. Buckley, et al. 2023. Prompt and Accurate GRB Source Localization Aboard the Advanced Particle Astrophysics Telescope (APT) and its Antarctic Demonstrator (ADAPT). In Proc. of 38th Int'l Cosmic Ray Conference, Vol. 444. Sissa Medialab, 956:1--956:9. https://doi.org/10.22323/1.444.0956
[16]
Thomas Janson and Udo Kebschull. 2023. Data pre-processing with high-level-synthesis and dataflow programming using HLS C++ dataflow template library. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1045 (2023), 167594. https://doi.org/10.1016/j.nima.2022.167594
[17]
Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we there yet? A study on the state of high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 898--911. https://doi.org/10.1109/TCAD.2018.2834439
[18]
Marco Lattuada, Fabrizio Ferrandi, and Maxime Perrotin. 2017. Data transfers analysis in computer assisted design flow of FPGA accelerators for aerospace systems. IEEE Transactions on Multi-Scale Computing Systems 4, 1 (2017), 3--16. https://doi.org/10.1109/TMSCS.2017.2699647
[19]
David S Lee, Gregory R Allen, Gary Swift, Matthew Cannon, Michael Wirthlin, Jeffrey S George, Rokutaro Koga, and Kangsen Huey. 2015. Single-event characterization of the 20 nm Xilinx Kintex Ultrascale field-programmable gate array under heavy ion irradiation. In Proc. of IEEE Radiation Effects Data Workshop. IEEE, 6 pages. https://doi.org/10.1109/REDW.2015.7336736
[20]
Vasileios Leon, Ioannis Stamoulias, George Lentaris, Dimitrios Soudris, David Gonzalez-Arjona, Ruben Domingo, David Merodio Codinachs, and Isabelle Conway. 2021. Development and testing on the European space-grade BRAVE FPGAs: Evaluation of NG-large using high-performance DSP benchmarks. IEEE Access 9 (2021), 131877--131892. https://doi.org/10.1109/ACCESS.2021.3114502
[21]
S Lesage, P Veres, MS Briggs, A Goldstein, D Kocevski, E Burns, CA Wilson-Hodge, PN Bhat, D Huppenkothen, CL Fryer, et al. 2023. Fermi-GBM discovery of GRB 221009A: An extraordinarily bright GRB from onset to afterglow. The Astrophysical Journal Letters 952, 2 (2023), L42.
[22]
Junquan Li, Mark Post, and Regina Lee. 2015. FPGA hardware nonlinear control design for modular CubeSat attitude control system. In Proc. of IEEE Aerospace Conference. IEEE, 15 pages. https://doi.org/10.1109/AERO.2015.7119084
[23]
K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo, A. Pastor, D.M. Codinachs, and I. Conway. 2018. Evaluation methodology and reconfiguration tests on the new European NG-MEDIUM FPGA. In Proc. of NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 127--134. https://doi.org/10.1109/AHS.2018.8541492
[24]
Charles Meegan, Giselher Lichti, P. N. Bhat, et al. 2009. The Fermi Gamma-Ray Burst Monitor. The Astrophysical Journal 702, 1 (Aug. 2009), 791--804. https://doi.org/10.1088/0004-637x/702/1/791
[25]
Vivek V Menon, Saquib A Siddiqui, Sanil Rao, Andrew Schmidt, Matthew French, Ved Chirayath, and Alan Li. 2021. Design and performance evaluation of multi-spectral sensing algorithms on CPU, GPU, and FPGA. In Proc. of IEEE Aerospace Conference. IEEE, 9 pages. https://doi.org/10.1109/AERO50100.2021.9438307
[26]
Péter Mészáros, Derek B Fox, Chad Hanna, and Kohta Murase. 2019. Multimessenger astrophysics. Nature Reviews Physics 1, 10 (2019), 585--599.
[27]
WA Najjar, W Bohm, BA Draper, J Hammes, R Rinker, JR Beveridge, M Chawathe, and C Ross. 2003. High-level language abstraction for reconfigurable computing. Computer 36, 8 (2003), 63--69. https://doi.org/10.1109/MC.2003.1220583
[28]
Andrii Neronov. 2019. Introduction to multi-messenger astronomy. In Journal of Physics: Conference Series, Vol. 1263. IOP Publishing, 012001.
[29]
Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable accelerator design with time-sensitive affine types. In Proc. of 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, New York, NY, USA, 393--407. https://doi.org/10.1145/3395657
[30]
Adam Nepomuk Otte, Distefano Garcia, Thanh Nguyen, and Dhruv Purushotham. 2017. Characterization of three high efficiency and blue sensitive silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. A 846 (Feb. 2017), 106--125. https://doi.org/10.1016/j.nima.2016.09.053
[31]
N. Perryman, C. Wilson, and A. George. 2023. Evaluation of Xilinx Versal Architecture for Next-Gen Edge Computing in Space. In Proc. of IEEE Aerospace Conference. IEEE, 11 pages. https://doi.org/10.1109/AERO55745.2023.10115906
[32]
Sebastian Sabogal and Alan George. 2021. A Methodology for Evaluating and Analyzing FPGA-Accelerated, Deep-Learning Applications for Onboard Space Processing. In Proc. of IEEE Space Computing Conference. IEEE, 143--154. https://doi.org/10.1109/SCC49971.2021.00022
[33]
A. Sanaullah, R. Patel, and M. Herbordt. 2018. An empirically guided optimization framework for FPGA OpenCL. In Proc. of International Conference on Field-Programmable Technology. IEEE, 46--53. https://doi.org/10.1109/FPT.2018.00018
[34]
Pedro Filipe Silva, João Bispo, and Nuno Paulino. 2021. FPGAs as General-Purpose Accelerators for Non-Experts via HLS: The Graph Analysis Example. In Proc. of International Conference on Field-Programmable Technology. IEEE, 4 pages. https://doi.org/10.1109/ICFPT52863.2021.9609832
[35]
Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators. ACM Transactions on Design Automation of Electronic Systems 27, 4 (2022), 32:1--32:27. https://doi.org/10.1145/3494534
[36]
Luca Sterpone, Sarah Azimi, and Corrado De Sio. 2023. A Framework for Uniformly Analyze and Mitigate Radiation-effects on FPGAs for Aerospace. In Proc. of 20th ACM International Conference on Computing Frontiers. ACM, 257--262. https://doi.org/10.1145/3587135.3592768
[37]
Marion Sudvarg et al. 2021. A Fast GRB Source Localization Pipeline for the Advanced Particle-astrophysics Telescope. In Proc. of 37th Int'l Cosmic Ray Conference, Vol. 395. Sissa Medialab, 588:1--588:9. https://doi.org/10.22323/1.395.0588
[38]
Marion Sudvarg et al. 2023. Front-End Computational Modeling and Design for the Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope. In Proc. of 38th International Cosmic Ray Conference, Vol. 444. Sissa Medialab, 764:1--764:9. https://doi.org/10.22323/1.444.0764
[39]
Marion Sudvarg, Jeremy Buhler, Roger Chamberlain, Chris Gill, and James Buckley. 2022. Work in Progress: Real-Time GRB Localization for the Advanced Particle-astrophysics Telescope. In Proc. of 15th Wkshp. on Operating Systems Platforms for Embedded Real-Time Applications. 57--61.
[40]
Marion Sudvarg, Jeremy Buhler, Roger D. Chamberlain, Chris Gill, James Buckley, and Wenlei Chen. 2023. Parameterized Workload Adaptation for Fork-Join Tasks with Dynamic Workloads and Deadlines. In Proc. of IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 232--242. https://doi.org/10.1109/RTCSA58653.2023.00035
[41]
Louis van Harten, Roel Jordans, and Hamid Pourshaghaghi. 2017. Necessity of fault tolerance techniques in Xilinx Kintex 7 FPGA devices for space missions: A case study. In Proc. of Euromicro Conference on Digital System Design. IEEE, 299--306. https://doi.org/10.1109/DSD.2017.45
[42]
TC Weekes, H Badran, SD Biller, I Bond, S Bradbury, J Buckley, D Carter-Lewis, M Catanese, S Criswell, W Cui, et al. 2002. VERITAS: the very energetic radiation imaging telescope array system. Astroparticle Physics 17, 2 (2002), 221--243. https://doi.org/10.1016/S0927-6505(01)00152-9
[43]
Jacob Wheelock, William Kanu, Marion Sudvarg, et al. 2021. Supporting Multimessenger Astrophysics with Fast Gamma-ray Burst Localization. In Proc. of IEEE/ACM HPC for Urgent Decision Making Workshop. IEEE, 8 pages. https://doi.org/10.1109/UrgentHPC54802.2021.00008
[44]
H. Ye, H. Jun, H. Jeong, S. Neuendorffer, and D. Chen. 2022. ScaleHLS: a scalable high-level synthesis framework with multi-level transformations and optimizations. In Proc. of 59th ACM/IEEE Design Automation Conference. ACM, New York, NY, USA, 1355--1358. https://doi.org/10.1145/3489517.3530631
[45]
Chenfeng Zhao, Zehao Dong, Yixin Chen, Xuan Zhang, and Roger D Chamberlain. 2023. GNNHLS: Evaluating Graph Neural Network Inference via High-Level Synthesis. In Proc. of 41st International Conference on Computer Design. IEEE, 574--577. https://doi.org/10.1109/ICCD58817.2023.00092
[46]
Chenfeng Zhao, Clayton J. Faber, Roger D. Chamberlain, and Xuan Zhang. 2024. HLPerf: Demystifying the Performance of HLS-based Graph Neural Networks with Dataflow Architectures. ACM Transactions on Reconfigurable Technology and Systems (2024). https://doi.org/10.1145/3655627
[47]
Guanwen Zhong, Vanchinathan Venkataramani, Yun Liang, Tulika Mitra, and Smail Niar. 2014. Design space exploration of multiple loops on FPGAs using high level synthesis. In Proc. of IEEE 32nd International Conference on Computer Design. IEEE, 456--463. https://doi.org/10.1109/ICCD.2014.6974719

Cited By

View all
  • (2024)The Advanced Particle-astrophysics Telescope (APT): Computation in SpaceProceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions10.1145/3637543.3652980(122-127)Online publication date: 7-May-2024

Index Terms

  1. HLS Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne Instrument

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CF '24: Proceedings of the 21st ACM International Conference on Computing Frontiers
      May 2024
      345 pages
      ISBN:9798400705977
      DOI:10.1145/3649153
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 02 July 2024

      Check for updates

      Badges

      Author Tags

      1. astrophysics telescopes
      2. gamma-ray astronomy
      3. hardware synthesis

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      Conference

      CF '24
      Sponsor:

      Acceptance Rates

      CF '24 Paper Acceptance Rate 33 of 105 submissions, 31%;
      Overall Acceptance Rate 273 of 785 submissions, 35%

      Upcoming Conference

      CF '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)256
      • Downloads (Last 6 weeks)83
      Reflects downloads up to 30 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)The Advanced Particle-astrophysics Telescope (APT): Computation in SpaceProceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions10.1145/3637543.3652980(122-127)Online publication date: 7-May-2024

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media