skip to main content
10.1145/3651863.3651880acmconferencesArticle/Chapter ViewAbstractPublication PagesmmsysConference Proceedingsconference-collections
research-article
Free Access

Enabling adaptive and reliable video delivery over hybrid unicast/broadcast networks

Published:15 April 2024Publication History

ABSTRACT

The increasing demand for high-quality video streaming, coupled with the necessity for low-latency delivery, presents significant challenges in today's multimedia landscape. In response to these challenges, this research explores the optimization of adaptive video streaming by integrating 5G terrestrial broadcasting with over-the-top (OTT) streaming methods. A comprehensive integration of forward error correction (FEC), temporal layer injection (TLI), and broadcast techniques enhance the robustness and efficiency of content delivery over broadcast networks and reduce unicast bandwidth to zero in low loss environments. Multiple strategies are compared through an extensive emulation setup for reducing latency in the end-to-end video delivery chain to sub 3-second live latency, demonstrating the effectiveness of a hybrid unicast-broadcast approach in achieving low-latency while maintaining high-quality video streaming performance with significantly reduced bandwidth. For 62.99% of viewers, unicast bandwidth can be reduced to as low as zero when broadcasting the top 3 TV channels.

References

  1. [n. d.]. TV | CIM - cim.be. https://www.cim.be/televisie?type=yearly_shares&year=2022&region=north. [Accessed 01-02-2024].Google ScholarGoogle Scholar
  2. [n. d.]. Virtual Wall. https://doc.ilabt.imec.be/ilabt/virtualwall/. [Accessed 01-02-2024].Google ScholarGoogle Scholar
  3. 2010. RaptorQ™ Technical Overview. Technical Report. QUALCOMM Incorporated. https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/RaptorQ_Technical_Overview.pdfGoogle ScholarGoogle Scholar
  4. 20th Century Studios. 2022. Avatar: The Way of Water | Official Teaser Trailer. www.youtube.com/watch?v=a8Gx8wiNbs8Google ScholarGoogle Scholar
  5. Kasidis Arunruangsirilert, Bo Wei, Hang Song, and Jiro Katto. 2022. Performance Evaluation of Low-Latency Live Streaming of MPEG-DASH UHD video over Commercial 5G NSA/SA Network. In 2022 International Conference on Computer Communications and Networks (ICCCN). 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  6. Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen, Sarra Hammoudi, and Roger Zimmermann. 2023. Toward One-Second Latency: Evolution of Live Media Streaming. arXiv:2310.03256 [cs.NI]Google ScholarGoogle Scholar
  7. Divyashri Bhat, Amr Rizk, and Michael Zink. 2017. Not so QUIC: A Performance Study of DASH over QUIC. In Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video (Taipei, Taiwan) (NOSSDAV'17). Association for Computing Machinery, New York, NY, USA, 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mike Bishop. 2022. HTTP/3. RFC 9114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web caching and Zipf-like distributions: evidence and implications. In IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), Vol. 1. 126--134 vol.1. Google ScholarGoogle ScholarCross RefCross Ref
  10. Inc. Cloudflare. [n. d.]. What is MPEG-DASH? | HLS vs. DASH. https://www.cloudflare.com/learning/video/what-is-mpeg-dash/. [Accessed 01-02-2024].Google ScholarGoogle Scholar
  11. Marius Corici, Konstantinos Liolis, Christos Politis, Alexander Geurtz, Joe Cahill, Shane Bunyan, Thomas Schlichter, Florian Völk, and Adam Kapovits. 2020. Satellite is 5G. (nov 2020).Google ScholarGoogle Scholar
  12. FFmpeg Developers. 2023. ffmpeg tool. https://ffmpeg.orgGoogle ScholarGoogle Scholar
  13. Jeta Dobruna, Enjesa Spahiu, Matevž Pogačnik, and Mojca Volk. 2022. 5G Streaming: IP-based vs. High-Power High-Tower broadcast. In 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). 1507--1511. Google ScholarGoogle ScholarCross RefCross Ref
  14. Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. RFC 7230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. David Gomez-Barquero, Jordi Joan Gimenez, and Roland Beutler. 2020. 3GPP enhancements for television services: LTE-based 5G terrestrial broadcast. Wiley Encyclopedia of Electrical and Electronics Engineering (2020).Google ScholarGoogle Scholar
  17. Europeon Telecommunications Standards Institute. 2023. DVB-I service delivery over 5G Systems; Deployment Guidelines. https://www.etsi.org/deliver/etsi_tr/103900_103999/103972/01.01.01_60/tr_103972v010101p.pdf. [Accessed 01-02-2024].Google ScholarGoogle Scholar
  18. International Organization for Standardization (ISO). 2020. Information technology - Multimedia application format (MPEG-A) - Part 19: Common media application format (CMAF) for segmented media. Technical Report. https://www.iso.org/standard/79106.htmlGoogle ScholarGoogle Scholar
  19. International Organization for Standardization (ISO). 2022. Information technology - Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation description and segment formats. Technical Report. https://www.iso.org/standard/83314.htmlGoogle ScholarGoogle Scholar
  20. Dongyub Ko, Kijong Koo, and Do Young Kim. 2016. Reducing the decoding complexity of RaptorQ codes for delay sensitive applications using a simplified and scaled-down matrix. AEU - International Journal of Electronics and Communications 70, 9 (2016), 1356--1360. Google ScholarGoogle ScholarCross RefCross Ref
  21. Hung T. Le, Thoa Nguyen, Nam Pham Ngoc, Anh T. Pham, and Truong Cong Thang. 2018. HTTP/2 Push-Based Low-Delay Live Streaming Over Mobile Networks With Stream Termination. IEEE Transactions on Circuits and Systems for Video Technology 28, 9 (2018), 2423--2427. Google ScholarGoogle ScholarCross RefCross Ref
  22. Jae-young Lee, Sung-Ik Park, Hyun-Jeong Yim, Bo-Mi Lim, Sunhyoung Kwon, Sungjun Ahn, and Namho Hur. 2020. IP-Based Cooperative Services Using ATSC 3.0 Broadcast and Broadband. IEEE Transactions on Broadcasting 66, 2 (2020), 440--448. Google ScholarGoogle ScholarCross RefCross Ref
  23. Carlos M. Lentisco, Luis Bellido, Andres Cárdenas, Ricardo Flores Moyano, and David Fernández. 2023. Design of a 5G Multimedia Broadcast Application Function Supporting Adaptive Error Recovery. IEEE Transactions on Multimedia 25 (2023), 378--388. Google ScholarGoogle ScholarCross RefCross Ref
  24. Hannes Mareen, Peter Lambert, and Glenn Van Wallendael. 2023. Temporal Layer Injection for Fast Bitrate Ladder Creation in Live Video Streaming. IEE International Symposium on Multimedia (2023).Google ScholarGoogle Scholar
  25. De Mi, Joe Eyles, Tero Jokela, Swen Petersen, Roman Odarchenko, Ece Öztürk, Duy-Kha Chau, Tuan Tran, Rory Turnbull, Heikki Kokkinen, et al. 2020. Demonstrating immersive media delivery on 5G broadcast and multicast testing networks. IEEE Transactions on Broadcasting 66, 2 (2020), 555--570.Google ScholarGoogle ScholarCross RefCross Ref
  26. Lorenz Minder, Amin Shokrollahi, Mark Watson, Michael Luby, and Thomas Stockhammer. 2011. RaptorQ Forward Error Correction Scheme for Object Delivery. RFC 6330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Utilities One. 2023. Analyzing the Impact of Network Congestion on Wireless Video Streaming --- utilitiesone.com. https://utilitiesone.com/analyzing-the-impact-of-network-congestion-on-wireless-video-streaming#anchor-1. [Accessed 01-02-2024].Google ScholarGoogle Scholar
  28. Toni Paila, Rod Walsh, Michael Luby, Vincent Roca, and Rami Lehtonen. 2012. FLUTE - File Delivery over Unidirectional Transport. RFC 6726. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Roger Pantos and William May. 2017. HTTP Live Streaming. RFC 8216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jon Postel. 1981. Internet Protocol. RFC 791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vincent Roca, Mark Watson, and Ali C. Begen. 2011. Forward Error Correction (FEC) Framework. RFC 6363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Amin Shokrollahi, Thomas Stockhammer, Michael Luby, and Mark Watson. 2007. Raptor Forward Error Correction Scheme for Object Delivery. RFC 5053. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Olimpjon Shurdi and Algenti Lala. 2023. Towards Broadcasting Linear Content over 5G Network. ESI Preprints 18 (2023), 513--513.Google ScholarGoogle Scholar
  34. Daniel Silhavy, Klaus Kühnhammer, Johann Mika, Thomas Stockhammer, and Jordi J Gimenez. 2023. 5G-MAG (Media Action Group) reference tools: Putting 5G in action for media. SMPTE Motion Imaging Journal 132, 1 (2023), 18--24.Google ScholarGoogle ScholarCross RefCross Ref
  35. Daniel Silhavy, David Waring, Dev Audsin, Richard Bradbury, Johann Mika, Klaus Kuehnhammer, Kurt Krauss, and Jordi J. Gimenez. 2023. 3GPP Rel-17 5G Media Streaming and 5G Broadcast powered by 5G-MAG Reference Tools. In Proceedings of the 2nd Mile-High Video Conference (Denver, CO, USA) (MHV '23). Association for Computing Machinery, New York, NY, USA, 85--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE MultiMedia 18, 4 (2011), 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thomas Stockhammer, Daniel Silhavy, Jordi Gimenez, Richard Bradbury, Johann Mika, David Waring, Yiqing Cao, Shilin Ding, and Kurt Krauss. 2023. Media over 5G in Action - Target 2023 for 5G-MAG Reference Tools. In 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  38. Raza Ul Mustafa, Md Tariqul Islam, Christian Rothenberg, Simone Ferlin, Darijo Raca, and Jason J. Quinlan. 2020. DASH QoE Performance Evaluation Framework with 5G Datasets. In 2020 16th International Conference on Network and Service Management (CNSM). 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  39. Raza Ul Mustafa, David Moura, and Christian Esteve Rothenberg. 2021. Machine Learning Approach to Estimate Video QoE of Encrypted DASH Traffic in 5G Networks. In 2021 IEEE Statistical Signal Processing Workshop (SSP). 586--589. Google ScholarGoogle ScholarCross RefCross Ref
  40. Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Rafael Huysegems, Patrice Rondao Alface, Tom Bostoen, and Filip De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177--2180. Google ScholarGoogle ScholarCross RefCross Ref
  41. Lorenzo Vicisano, Mark Watson, and Michael Luby. 2010. Asynchronous Layered Coding (ALC) Protocol Instantiation. RFC 5775. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Cedric Westphal, Stefan Lederer, Christopher Mueller, Andrea Detti, Daniel Corujo, Jianping Wang, Marie-Jose Montpetit, Niall Murray, Christian Timmerer, Daniel Posch, Aytac Azgin, and Will (Shucheng) LIU. 2016. Adaptive Video Streaming over Information-Centric Networking (ICN). RFC 7933. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Waqar Zia, Thomas Stockhammer, Lena Chaponniere, Giridhar Mandyam, and Michael Luby. 2022. Real-Time Transport Object Delivery over Unidirectional Transport (ROUTE). RFC 9223. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Enabling adaptive and reliable video delivery over hybrid unicast/broadcast networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        NOSSDAV '24: Proceedings of the 34th edition of the Workshop on Network and Operating System Support for Digital Audio and Video
        April 2024
        77 pages
        ISBN:9798400706134
        DOI:10.1145/3651863

        Copyright © 2024 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 April 2024

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate118of363submissions,33%
      • Article Metrics

        • Downloads (Last 12 months)24
        • Downloads (Last 6 weeks)24

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader