skip to main content
10.1145/3652920.3652932acmotherconferencesArticle/Chapter ViewAbstractPublication PagesahsConference Proceedingsconference-collections
research-article
Open Access

Synthetic Visual Sensations: Augmenting Human Spatial Awareness with a Wearable Retinal Electric Stimulation Device

Published:01 May 2024Publication History

ABSTRACT

Alternating current stimulation of the retina (rACS) can non-invasively induce visual sensations called phosphenes (bright flashes) in the visual field. We explore the use of rACS to elicit visual sensations and explore the use cases of "seeing" objects behind the user. We designed a wearable rACS system and conducted a study to understand the visual sensations we could elicit and their efficacy when applied to augmenting a user’s spatial awareness. We found that our device reliably generated synthetic sensations and, when applied in an object avoidance task, significantly augmented users’ awareness of objects approaching them from behind compared to users with no stimulation feedback. Our results demonstrate how future research can use electrical stimulation in wearable systems for sensory enhancement.

References

  1. A. Antal, I. Alekseichuk, M. Bikson, J. Brockmöller, A.R. Brunoni, R. Chen, L.G. Cohen, G. Dowthwaite, J. Ellrich, A. Flöel, F. Fregni, M.S. George, R. Hamilton, J. Haueisen, C.S. Herrmann, F.C. Hummel, J.P. Lefaucheur, D. Liebetanz, C.K. Loo, C.D. McCaig, C. Miniussi, P.C. Miranda, V. Moliadze, M.A. Nitsche, R. Nowak, F. Padberg, A. Pascual-Leone, W. Poppendieck, A. Priori, S. Rossi, P.M. Rossini, J. Rothwell, M.A. Rueger, G. Ruffini, K. Schellhorn, H.R. Siebner, Y. Ugawa, A. Wexler, U. Ziemann, M. Hallett, and W. Paulus. 2017. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology 128, 9 (Sept. 2017), 1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001Google ScholarGoogle ScholarCross RefCross Ref
  2. Daria Antonenko, Miriam Faxel, Ulrike Grittner, Michal Lavidor, and Agnes Flöel. 2016. Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural plasticity 2016 (2016).Google ScholarGoogle Scholar
  3. Kazuma Aoyama, Nobuhisa Miyamoto, Satoru Sakurai, Hiroyuki Iizuka, Makoto Mizukami, Masahiro Furukawa, Taro Maeda, and Hideyuki Ando. 2021. Electrical generation of intranasal irritating chemosensation. IEEE Access 9 (2021), 106714–106724.Google ScholarGoogle ScholarCross RefCross Ref
  4. Paul Bach-y Rita, Carter C Collins, Frank A Saunders, Benjamin White, and Lawrence Scadden. 1969. Vision substitution by tactile image projection. Nature 221, 5184 (1969), 963–964.Google ScholarGoogle Scholar
  5. Paul Bach-y Rita, Mitchell E. Tyler, and Kurt A. Kaczmarek. 2003. Seeing with the Brain. International Journal of Human-Computer Interaction 15, 2 (April 2003), 285–295. https://doi.org/10.1207/S15327590IJHC1502_6Google ScholarGoogle ScholarCross RefCross Ref
  6. Aakash Bajpai, Justine C Powell, Aaron J Young, and Anirban Mazumdar. 2019. Enhancing physical human evasion of moving threats using tactile cues. IEEE Transactions on Haptics 13, 1 (2019), 32–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Elaine Biddiss and Tom Chau. 2007. Upper-limb prosthetics: critical factors in device abandonment. American journal of physical medicine & rehabilitation 86, 12 (2007), 977–987.Google ScholarGoogle ScholarCross RefCross Ref
  8. Richard Byrne, Joe Marshall, and Florian’Floyd’ Mueller. 2016. Balance ninja: towards the design of digital vertigo games via galvanic vestibular stimulation. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. 159–170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Valdemar Danry, Pat Pataranutaporn, Florian Mueller, Pattie Maes, and Sang-won Leigh. 2022. On Eliciting a Sense of Self when Integrating with Computers. In Augmented Humans 2022. 68–81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Giulia Dominijanni, Solaiman Shokur, Gionata Salvietti, Sarah Buehler, Erica Palmerini, Simone Rossi, Frederique De Vignemont, Andrea d’Avella, Tamar R Makin, Domenico Prattichizzo, 2021. The neural resource allocation problem when enhancing human bodies with extra robotic limbs. Nature Machine Intelligence 3, 10 (2021), 850–860.Google ScholarGoogle ScholarCross RefCross Ref
  11. James Dowsett and Christoph S Herrmann. 2016. Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording. Frontiers in human neuroscience 10 (2016), 135.Google ScholarGoogle Scholar
  12. Giulia V Elli, Stefania Benetti, and Olivier Collignon. 2014. Is there a future for sensory substitution outside academic laboratories?Multisensory research 27, 5-6 (2014), 271–291.Google ScholarGoogle Scholar
  13. Daiki Higuchi, Kazuma Aoyama, Masahiro Furukawa, Taro Maeda, and Hideyuki Ando. 2017. Position shift of phosphene and attention attraction in arbitrary direction with galvanic retina stimulation. In Proceedings of the 8th Augmented Human International Conference. 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Simon Høffding and Kristian Martiny. 2016. Framing a phenomenological interview: what, why and how. Phenomenology and the Cognitive Sciences 15, 4 (2016), 539–564.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ryota Kanai, Leila Chaieb, Andrea Antal, Vincent Walsh, and Walter Paulus. 2008. Frequency-dependent electrical stimulation of the visual cortex. Current Biology 18, 23 (2008), 1839–1843.Google ScholarGoogle ScholarCross RefCross Ref
  16. Nicholas Ketz, Aaron P Jones, Natalie B Bryant, Vincent P Clark, and Praveen K Pilly. 2018. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. Journal of Neuroscience 38, 33 (2018), 7314–7326.Google ScholarGoogle ScholarCross RefCross Ref
  17. Michinari Kono, Takumi Takahashi, Hiromi Nakamura, Takashi Miyaki, and Jun Rekimoto. 2018. Design guideline for developing safe systems that apply electricity to the human body. ACM Transactions on Computer-Human Interaction (TOCHI) 25, 3 (2018), 1–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Árni Kristjánsson, Alin Moldoveanu, Ómar I Jóhannesson, Oana Balan, Simone Spagnol, Vigdís Vala Valgeirsdóttir, and Rúnar Unnthorsson. 2016. Designing sensory-substitution devices: Principles, pitfalls and potential 1. Restorative neurology and neuroscience 34, 5 (2016), 769–787.Google ScholarGoogle Scholar
  19. Ilkka Laakso and Akimasa Hirata. 2013. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. Journal of neural engineering 10, 4 (2013), 046009.Google ScholarGoogle ScholarCross RefCross Ref
  20. Sang-won Leigh, Harpreet Sareen, Hsin-Liu Cindy Kao, Xin Liu, and Pattie Maes. 2017. Body-borne computers as extensions of self. Computers 6, 1 (2017), 12.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pedro Lopes, Josh Andres, Richard Byrne, Nathan Semertzidis, Zhuying Li, Jarrod Knibbe, Stefan Greuter, 2021. Towards understanding the design of bodily integration. International Journal of Human-Computer Studies 152 (2021), 102643.Google ScholarGoogle ScholarCross RefCross Ref
  22. Pedro Lopes, Patrik Jonell, and Patrick Baudisch. 2015. Affordance++ allowing objects to communicate dynamic use. In Proceedings of the 33rd annual acm conference on human factors in computing systems. 2515–2524.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing haptics to walls & heavy objects in virtual reality by means of electrical muscle stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 1471–1482.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kristian Moltke Martiny, Juan Toro, and Simon Høffding. 2021. Framing a phenomenological mixed method: from inspiration to guidance. Frontiers in Psychology 12 (2021), 602081.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hideyuki Matsumoto and Yoshikazu Ugawa. 2017. Adverse events of tDCS and tACS: a review. Clinical neurophysiology practice 2 (2017), 19–25.Google ScholarGoogle Scholar
  26. Hiromi Nakamura and Homei Miyashita. 2013. Controlling saltiness without salt: evaluation of taste change by applying and releasing cathodal current. In Proceedings of the 5th international workshop on Multimedia for cooking & eating activities(CEA ’13). Association for Computing Machinery, New York, NY, USA, 9–14. https://doi.org/10.1145/2506023.2506026Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniel Edward Novy. 2019. Programmable synthetic hallucinations: towards a boundless mixed reality. Ph.D. Dissertation. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  28. Alex Olwal and Bernard Kress. 2018. 1D eyewear: peripheral, hidden LEDs and near-eye holographic displays for unobtrusive augmentation. In Proceedings of the 2018 ACM International Symposium on Wearable Computers. 184–187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. International Commission on Non-Ionizing Radiation Protection 2009. ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”. Health physics 97, 3 (2009), 257–258.Google ScholarGoogle ScholarCross RefCross Ref
  30. Walter Paulus. 2011. Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychological rehabilitation 21, 5 (2011), 602–617.Google ScholarGoogle Scholar
  31. Colline Poirier, Anne De Volder, Dai Tranduy, and Christian Scheiber. 2007. Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects. Neuropsychologia 45, 5 (2007), 1108–1121.Google ScholarGoogle ScholarCross RefCross Ref
  32. Nimesha Ranasinghe, Thi Ngoc Tram Nguyen, Yan Liangkun, Lien-Ya Lin, David Tolley, and Ellen Yi-Luen Do. 2017. Vocktail: A virtual cocktail for pairing digital taste, smell, and color sensations. In Proceedings of the 25th ACM international conference on Multimedia. 1139–1147.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Robert MG Reinhart and John A Nguyen. 2019. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature neuroscience 22, 5 (2019), 820–827.Google ScholarGoogle Scholar
  34. E Santarnecchi, T Muller, S Rossi, A Sarkar, NR Polizzotto, A Rossi, and R Cohen Kadosh. 2016. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex 75 (2016), 33–43.Google ScholarGoogle ScholarCross RefCross Ref
  35. Eldon Schoop, James Smith, and Bjoern Hartmann. 2018. Hindsight: enhancing spatial awareness by sonifying detected objects in real-time 360-degree video. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pedro Shiozawa, Mailu Enokibara da Silva, Thais Cristina de Carvalho, Quirino Cordeiro, André R Brunoni, and Felipe Fregni. 2014. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arquivos de neuro-psiquiatria 72 (2014), 542–547.Google ScholarGoogle Scholar
  37. Peter B. Shull and Dana D. Damian. 2015. Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. Journal of NeuroEngineering and Rehabilitation 12, 1 (July 2015), 59. https://doi.org/10.1186/s12984-015-0055-zGoogle ScholarGoogle ScholarCross RefCross Ref
  38. Zenon Sienkiewicz, Eric Van Rongen, Rodney Croft, Gunde Ziegelberger, and Bernard Veyret. 2016. A closer look at the thresholds of thermal damage: workshop report by an ICNIRP Task Group. Health physics 111, 3 (2016), 300.Google ScholarGoogle ScholarCross RefCross Ref
  39. Misha Sra, Xuhai Xu, and Pattie Maes. 2017. GalVR: a novel collaboration interface using GVS. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology. 1–2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shriya S Srinivasan, Greta Tuckute, Jasmine Zou, Samantha Gutierrez-Arango, Hyungeun Song, Robert L Barry, and Hugh M Herr. 2020. Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Science translational medicine 12, 573 (2020), eabc5926.Google ScholarGoogle Scholar
  41. Yudai Tanaka, Jun Nishida, and Pedro Lopes. 2022. Electrical Head Actuation: Enabling Interactive Systems to Directly Manipulate Head Orientation. In CHI Conference on Human Factors in Computing Systems. 1–15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Johannes Vosskuhl, René J Huster, and Christoph S Herrmann. 2015. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in human neuroscience 9 (2015), 257.Google ScholarGoogle Scholar
  43. Fan-Gang Zeng, Phillip Tran, Matthew Richardson, Shuping Sun, and Yuchen Xu. 2019. Human sensation of transcranial electric stimulation. Scientific reports 9, 1 (2019), 1–12.Google ScholarGoogle Scholar

Index Terms

  1. Synthetic Visual Sensations: Augmenting Human Spatial Awareness with a Wearable Retinal Electric Stimulation Device

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Article Metrics

        • Downloads (Last 12 months)106
        • Downloads (Last 6 weeks)106

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format