skip to main content
10.1145/3652920.3652945acmotherconferencesArticle/Chapter ViewAbstractPublication PagesahsConference Proceedingsconference-collections
research-article

Exploring the Kuroko Paradigm: The Effect of Enhancing Virtual Humans with Reality Actuators in Augmented Reality

Published:01 May 2024Publication History

ABSTRACT

This study explores the value of using virtual humans (VHs) to mask real entities within augmented reality (AR) interactive environments. We believe that one ultimate solution to bridge the gap between virtual and real worlds is to enable virtual entities to interact with the real world seamlessly and physically. However, unlike major approaches such as displaying haptics directly onto real users, letting virtual entities affect the real world physically is an underrepresented field in AR. To explore this approach, we employ reality actuators, here a robot arm, behind an AR VH as it may improve the sense of social presence and engagement in human-robot interaction systems. We developed an AR system where a VH is overlaid onto a robotic arm participating in a chess game. The preliminary results of our pilot study suggest the system’s significant potential to not only enhance the perceived social presence of VHs but also increase overall presence and user engagement, especially compared to situations where the mechanisms are visible without virtual concealment. We hope this work paves the way for more seamless reality experience between real and virtual worlds.

Skip Supplemental Material Section

Supplemental Material

References

  1. Samer Al Moubayed, Jonas Beskow, Gabriel Skantze, and Björn Granström. 2012. Furhat: A Back-Projected Human-Like Robot Head for Multiparty Human-Machine Interaction. In Cognitive Behavioural Systems, Anna Esposito, Antonietta M. Esposito, Alessandro Vinciarelli, Rüdiger Hoffmann, and Vincent C. Müller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 114–130.Google ScholarGoogle Scholar
  2. Takafumi Aoki, Takashi Matsushita, Yuichiro Iio, Hironori Mitake, Takashi Toyama, Shoichi Hasegawa, Rikiya Ayukawa, Hiroshi Ichikawa, Makoto Sato, Takatsugu Kuriyama, Kazuyuki Asano, Toshihiro Kawase, and Itaru Matumura. 2005. Kobito: virtual brownies. In ACM SIGGRAPH 2005 Emerging Technologies (Los Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery, New York, NY, USA, 11–es. https://doi.org/10.1145/1187297.1187309Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sahar Aseeri and Victoria Interrante. 2021. The Influence of Avatar Representation on Interpersonal Communication in Virtual Social Environments. IEEE Transactions on Visualization and Computer Graphics 2626 (2021), 1–1. Issue c. https://doi.org/10.1109/tvcg.2021.3067783Google ScholarGoogle ScholarCross RefCross Ref
  4. Ronald T Azuma. 1997. A survey of augmented reality. Presence: teleoperators & virtual environments 6, 4 (1997), 355–385.Google ScholarGoogle Scholar
  5. Jeremy N Bailenson and Jim Blascovich. 2004. Avatars. In Berkshire Encyclopedia of Human-Computer Interaction. Berkshire, Great Barrington, MA, USA, 64–68.Google ScholarGoogle Scholar
  6. Marios Bikos, Yuta Itoh, Gudrun Klinker, and Konstantinos Moustakas. 2015. An interactive augmented reality chess game using bare-hand pinch gestures. In 2015 International Conference on Cyberworlds (CW). IEEE, IEEE, Visby, Sweden, 355–358. https://doi.org/10.1109/CW.2015.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Frank Biocca and Chad Harms. 2002. Defining and measuring social presence: Contribution to the networked minds theory and measure. Proceedings of PRESENCE 2002 (2002), 7–36.Google ScholarGoogle Scholar
  8. Pulkit Budhiraja, Rajinder Sodhi, Brett Jones, Kevin Karsch, Brian Bailey, and David Forsyth. 2015. Where’s My Drink? Enabling Peripheral Real World Interactions While Using HMDs. arxiv:1502.04744 [cs.HC]Google ScholarGoogle Scholar
  9. Yen-Fu Chen, Sylvia Janicki, 2020. A cognitive-based board game with augmented reality for older adults: Development and usability study. JMIR serious games 8, 4 (2020), e22007.Google ScholarGoogle Scholar
  10. David T. Coleman, Ioan A. Sucan, Sachin Chitta, and Nikolaus Correll. 2014. Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study. JOSER - Journal of Software Engineering for Robotics 5 (2014), 3–16. https://doi.org/10.6092/JOSER_2014_05_01_P3Google ScholarGoogle ScholarCross RefCross Ref
  11. Bruce Damer, Richard Walker, Jeremy Judson, Jackie Dove, Steve DiPaola, Ali Ebtekar, Stasia McGehee, and Kate Reber. 1997. Avatars!; Exploring and Building Virtual Worlds on the Internet (1st ed.). Peachpit Press, USA.Google ScholarGoogle Scholar
  12. Chloe Eghtebas, Gudrun Klinker, Susanne Boll, and Marion Koelle. 2023. Co-Speculating on Dark Scenarios and Unintended Consequences of a Ubiquitous(Ly) Augmented Reality. In Proceedings of the 2023 ACM Designing Interactive Systems Conference (Pittsburgh, PA, USA) (DIS ’23). Association for Computing Machinery, New York, NY, USA, 2392–2407. https://doi.org/10.1145/3563657.3596073Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Steven Feiner. 1994. Redefining the user interface: Augmented reality. In Course Notes: Developing advanced virtual reality applications(Course Notes: Siggraph 1994, 21st International Conference on Computer Graphics and Interactive Techniques). Association for Computing Machinery, Orlando, FL, USA, 1–18.Google ScholarGoogle Scholar
  14. Jann Philipp Freiwald, Julius Schenke, Nale Lehmann-Willenbrock, and Frank Steinicke. 2021. Effects of Avatar Appearance and Locomotion on Co-Presence in Virtual Reality Collaborations. In Proceedings of Mensch Und Computer 2021 (Ingolstadt, Germany) (MuC ’21). Association for Computing Machinery, New York, NY, USA, 393–401. https://doi.org/10.1145/3473856.3473870Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Makio Fukuda and Hisayoshi Horioka. 2013. Improvement in the fun of the board game by AR introduction (In the case of Japanese Board Game “Sugoroku”). In 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE). IEEE, IEEE, Tokyo, Japan, 334–338.Google ScholarGoogle ScholarCross RefCross Ref
  16. Tianyang Gao and Yuta Itoh. 2019. The Kuroko Paradigm: The Implications of Augmenting Physical Interaction with AR Avatars. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, Beijing, China, 26–27. https://doi.org/10.1109/ISMAR-Adjunct.2019.00022Google ScholarGoogle ScholarCross RefCross Ref
  17. Scott A Green, Mark Billinghurst, XiaoQi Chen, and J Geoffrey Chase. 2008. Human-robot collaboration: A literature review and augmented reality approach in design. International journal of advanced robotic systems 5, 1 (2008), 1.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jens Grubert, Tobias Langlotz, Stefanie Zollmann, and Holger Regenbrecht. 2016. Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE transactions on visualization and computer graphics 23, 6 (2016), 1706–1724.Google ScholarGoogle Scholar
  19. Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (Oct. 2006), 904–908. https://doi.org/10.1177/154193120605000909Google ScholarGoogle ScholarCross RefCross Ref
  20. Carrie Heater. 1992. Being there: The subjective experience of presence.Presence Teleoperators Virtual Environ. 1, 2 (1992), 262–271.Google ScholarGoogle Scholar
  21. Duy-Nguyen Ta Huynh, Karthik Raveendran, Yan Xu, Kimberly Spreen, and Blair MacIntyre. 2009. Art of defense: a collaborative handheld augmented reality board game. In Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games (, New Orleans, Louisiana,) (Sandbox ’09). Association for Computing Machinery, New York, NY, USA, 135–142. https://doi.org/10.1145/1581073.1581095Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Masahiko Inami, Naoki Kawakami, and Susumu Tachi. 2003. Optical camouflage using retro-reflective projection technology. In The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings.IEEE, Tokyo, Japan, 348–349. https://doi.org/10.1109/ISMAR.2003.1240754Google ScholarGoogle ScholarCross RefCross Ref
  23. Brennan Jones, Yaying Zhang, Priscilla N. Y. Wong, and Sean Rintel. 2021. Belonging There: VROOM-ing into the Uncanny Valley of XR Telepresence. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 59 (apr 2021), 31 pages. https://doi.org/10.1145/3449133Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shunichi Kasahara, Ryuma Niiyama, Valentin Heun, and Hiroshi Ishii. 2013. exTouch: spatially-aware embodied manipulation of actuated objects mediated by augmented reality. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction (Barcelona, Spain) (TEI ’13). Association for Computing Machinery, New York, NY, USA, 223–228. https://doi.org/10.1145/2460625.2460661Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Keishirou Kataoka, Takuya Yamamoto, Mai Otsuki, Fumihisa Shibata, and Asako Kimura. 2019. A new interactive haptic device for getting physical contact feeling of virtual objects. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, IEEE, Osaka, Japan, 1323–1324. https://doi.org/10.1109/VR.2019.8797762.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kangsoo Kim, Luke Boelling, Steffen Haesler, Jeremy Bailenson, Gerd Bruder, and Greg F. Welch. 2018. Does a Digital Assistant Need a Body? The Influence of Visual Embodiment and Social Behavior on the Perception of Intelligent Virtual Agents in AR. In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, Munich, Germany, 105–114. https://doi.org/10.1109/ISMAR.2018.00039Google ScholarGoogle ScholarCross RefCross Ref
  27. Sven Kratz and Fred Rabelo Ferriera. 2016. Immersed remotely: Evaluating the use of head mounted devices for remote collaboration in robotic telepresence. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, IEEE Press, New York, NY, USA, 638–645.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Isabel Leal, Krzysztof Choromanski, Deepali Jain, Avinava Dubey, Jake Varley, Michael Ryoo, Yao Lu, Frederick Liu, Vikas Sindhwani, Quan Vuong, Tamas Sarlos, Ken Oslund, Karol Hausman, and Kanishka Rao. 2023. SARA-RT: Scaling up Robotics Transformers with Self-Adaptive Robust Attention. arxiv:2312.01990 [cs.RO]Google ScholarGoogle Scholar
  29. Kwan Min Lee. 2004. Presence, explicated. Communication theory 14, 1 (2004), 27–50.Google ScholarGoogle Scholar
  30. Myungho Lee, Kangsoo Kim, Salam Daher, Andrew Raij, Ryan Schubert, Jeremy Bailenson, and Greg Welch. 2016. The wobbly table: Increased social presence via subtle incidental movement of a real-virtual table. In 2016 IEEE virtual reality (VR). IEEE, IEEE, Greenville, SC, USA, 11–17.Google ScholarGoogle Scholar
  31. Myungho Lee, Nahal Norouzi, Gerd Bruder, Pamela J. Wisniewski, and Gregory F. Welch. 2018. The physical-virtual table: exploring the effects of a virtual human’s physical influence on social interaction. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (Tokyo, Japan) (VRST ’18). Association for Computing Machinery, New York, NY, USA, Article 25, 11 pages. https://doi.org/10.1145/3281505.3281533Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yue Li, Eugene Ch’ng, and Sue Cobb. 2023. Factors Influencing Engagement in Hybrid Virtual and Augmented Reality. ACM Trans. Comput.-Hum. Interact. 30, 4, Article 65 (sep 2023), 27 pages. https://doi.org/10.1145/3589952Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hao-Chiang Koong Lin, Yu-Hsuan Lin, Tao-Hua Wang, Lun-Ke Su, and Yueh-Min Huang. 2021. Effects of Incorporating Augmented Reality into a Board Game for High School Students’ Learning Motivation and Acceptance in Health Education. Sustainability 13, 6 (2021), 3333. https://doi.org/10.3390/su13063333Google ScholarGoogle ScholarCross RefCross Ref
  34. Jean-Luc Lugrin, Maximilian Ertl, Philipp Krop, Richard Klüpfel, Sebastian Stierstorfer, Bianka Weisz, Maximilian Rück, Johann Schmitt, Nina Schmidt, and Marc Erich Latoschik. 2018. Any “Body” There? Avatar Visibility Effects in a Virtual Reality Game. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Reutlingen, Germany, 17–24. https://doi.org/10.1109/VR.2018.8446229Google ScholarGoogle ScholarCross RefCross Ref
  35. Anabela Marto and Alexandrino Gonçalves. 2022. Augmented Reality Games and Presence: A Systematic Review. Journal of Imaging 2022, Vol. 8, Page 91 8 (3 2022), 91. Issue 4. https://doi.org/10.3390/JIMAGING8040091Google ScholarGoogle ScholarCross RefCross Ref
  36. Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. 1995. Augmented reality: a class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies, Hari Das (Ed.). Vol. 2351. International Society for Optics and Photonics, SPIE, Boston, MA, United States, 282 – 292. https://doi.org/10.1117/12.197321Google ScholarGoogle ScholarCross RefCross Ref
  37. Shohei Mori, Sei Ikeda, and Hideo Saito. 2017. A survey of diminished reality: Techniques for visually concealing, eliminating, and seeing through real objects. IPSJ Transactions on Computer Vision and Applications 9, 1 (2017), 1–14.Google ScholarGoogle ScholarCross RefCross Ref
  38. Noradila Nordin, Nur Rasyidah Mohd Nordin, and Wafa Omar. 2022. The Efficacy of REV-OPOLY Augmented Reality Board Game in Higher Education. International Journal of Emerging Technologies in Learning (iJET) 17, 07 (Apr. 2022), pp. 22–37. https://doi.org/10.3991/ijet.v17i07.26317Google ScholarGoogle ScholarCross RefCross Ref
  39. Nahal Norouzi, Gerd Bruder, Brandon Belna, Stefanie Mutter, Damla Turgut, and Greg Welch. 2019. A Systematic Review of the Convergence of Augmented Reality, Intelligent Virtual Agents, and the Internet of Things. Springer International Publishing, Cham, 1–24. https://doi.org/10.1007/978-3-030-04110-6_1Google ScholarGoogle ScholarCross RefCross Ref
  40. Heather L. O’Brien and Elaine G. Toms. 2008. What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology 59, 6 (2008), 938–955. https://doi.org/10.1002/asi.20801Google ScholarGoogle ScholarCross RefCross Ref
  41. Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. 2018. A Systematic Review of Social Presence: Definition, Antecedents, and Implications. Frontiers in Robotics and AI 5 (Oct. 2018), 114. https://doi.org/10.3389/frobt.2018.00114Google ScholarGoogle ScholarCross RefCross Ref
  42. Heather L. O’Brien, Paul Cairns, and Mark Hall. 2018. A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human-Computer Studies 112 (April 2018), 28–39. https://doi.org/10.1016/j.ijhcs.2018.01.004Google ScholarGoogle ScholarCross RefCross Ref
  43. Alexander Plopski, Ada Virginia Taylor, Elizabeth Jeanne Carter, and Henny Admoni. 2019. InvisibleRobot: Facilitating Robot Manipulation Through Diminished Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, Beijing, China, 165–166. https://doi.org/10.1109/ismar-adjunct.2019.00-55Google ScholarGoogle ScholarCross RefCross Ref
  44. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, Andrew Y Ng, 2009. ROS: an open-source Robot Operating System. In ICRA workshop on open source software, Vol. 3. IEEE, Kobe, Japan, 5.Google ScholarGoogle Scholar
  45. Daniel Roth, Jean Luc Lugrin, Dmitri Galakhov, Arvid Hofmann, Gary Bente, Marc Erich Latoschik, and Arnulph Fuhrmann. 2016. Avatar realism and social interaction quality in virtual reality. Proceedings - IEEE Virtual Reality 2016-July (2016), 277–278. https://doi.org/10.1109/VR.2016.7504761 Avatar realism has a significant impact.Google ScholarGoogle ScholarCross RefCross Ref
  46. Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan Li, and Giljoo Nam. 2023. Relightable Gaussian Codec Avatars. arxiv:2312.03704 [cs.GR]Google ScholarGoogle Scholar
  47. Martijn J Schuemie, Peter Van Der Straaten, Merel Krijn, and Charles APG Van Der Mast. 2001. Research on presence in virtual reality: A survey. Cyberpsychology & behavior 4, 2 (2001), 183–201.Google ScholarGoogle Scholar
  48. Mel Slater, Martin Usoh, and Anthony Steed. 1994. Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments 3, 2 (05 1994), 130–144. https://doi.org/10.1162/pres.1994.3.2.130Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Vinicius Souza, Anderson Maciel, Luciana Nedel, and Regis Kopper. 2021. Measuring Presence in Virtual Environments: A Survey. ACM Comput. Surv. 54, 8, Article 163 (oct 2021), 37 pages. https://doi.org/10.1145/3466817Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Patrick L. Strandholt, Oana A. Dogaru, Niels C. Nilsson, Rolf Nordahl, and Stefania Serafin. 2020. Knock on Wood: Combining Redirected Touching and Physical Props for Tool-Based Interaction in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (, Honolulu, HI, USA,) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376303Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai Marquardt. 2022. Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced Human-Robot Interaction and Robotic Interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (, New Orleans, LA, USA,) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 553, 33 pages. https://doi.org/10.1145/3491102.3517719Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kien TP Tran, Sungchul Jung, Simon Hoermann, and Robert W Lindeman. 2019. MDI: A Multi-channel Dynamic Immersion Headset for Seamless Switching between Virtual and Real World Activities. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, IEEE Press, Osaka, Japan, 350–358. https://doi.org/10.1109/VR.2019.8798240Google ScholarGoogle ScholarCross RefCross Ref
  53. Martin Usoh, Ernest Catena, Sima Arman, and Mel Slater. 2000. Using Presence Questionnaires in Reality. Presence: Teleoperators and Virtual Environments 9 (10 2000), 497–503. Issue 5. https://doi.org/10.1162/105474600566989Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Raphael Vallat. 2018. Pingouin: statistics in Python. Journal of Open Source Software 3, 31 (2018), 1026. https://doi.org/10.21105/joss.01026Google ScholarGoogle ScholarCross RefCross Ref
  55. Michael Walker, Thao Phung, Tathagata Chakraborti, Tom Williams, and Daniel Szafir. 2023. Virtual, Augmented, and Mixed Reality for Human-robot Interaction: A Survey and Virtual Design Element Taxonomy. J. Hum.-Robot Interact. 12, 4, Article 43 (jul 2023), 39 pages. https://doi.org/10.1145/3597623Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Tzu-Yang Wang, Yuji Sato, Mai Otsuki, Hideaki Kuzuoka, and Yusuke Suzuki. 2020. Effect of Body Representation Level of an Avatar on Quality of AR-Based Remote Instruction. Multimodal Technologies and Interaction 4, 1 (Feb. 2020), 3. https://doi.org/10.3390/mti4010003Google ScholarGoogle ScholarCross RefCross Ref
  57. Florian Weidner, Gerd Boettcher, Stephanie Arevalo Arboleda, Chenyao Diao, Luljeta Sinani, Christian Kunert, Christoph Gerhardt, Wolfgang Broll, and Alexander Raake. 2023. A Systematic Review on the Visualization of Avatars and Agents in AR & VR displayed using Head-Mounted Displays., 2596-2606 pages. Issue 5. https://doi.org/10.1109/TVCG.2023.3247072Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Bob G. Witmer and Michael J. Singer. 1998. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoper. Virtual Environ. 7, 3 (jun 1998), 225–240. https://doi.org/10.1162/105474698565686Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yuelang Xu, Benwang Chen, Zhe Li, Hongwen Zhang, Lizhen Wang, Zerong Zheng, and Yebin Liu. 2023. Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians. arxiv:2312.03029 [cs.CV]Google ScholarGoogle Scholar
  60. Cik Suhaimi Yusof, Tian Sheng Low, Ajune Wanis Ismail, and Mohd Shahrizal Sunar. 2019. Collaborative Augmented Reality for Chess Game in Handheld Devices. In 2019 IEEE Conference on Graphics and Media (GAME). IEEE, Pulau Pinang, Malaysia, 32–37. https://doi.org/10.1109/GAME47560.2019.8980979Google ScholarGoogle ScholarCross RefCross Ref
  61. Andre Zenner and Antonio Krüger. 2017. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE transactions on visualization and computer graphics 23, 4 (2017), 1285–1294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier Romero. 2023. Drivable 3D Gaussian Avatars. arxiv:2311.08581 [cs.CV]Google ScholarGoogle Scholar

Index Terms

  1. Exploring the Kuroko Paradigm: The Effect of Enhancing Virtual Humans with Reality Actuators in Augmented Reality

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            AHs '24: Proceedings of the Augmented Humans International Conference 2024
            April 2024
            355 pages
            ISBN:9798400709807
            DOI:10.1145/3652920

            Copyright © 2024 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 May 2024

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited
          • Article Metrics

            • Downloads (Last 12 months)25
            • Downloads (Last 6 weeks)25

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format