skip to main content
10.1145/3654777.3676458acmotherconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Open access

PortaChrome: A Portable Contact Light Source for Integrated Re-Programmable Multi-Color Textures

Published: 11 October 2024 Publication History

Abstract

In this paper, we present PortaChrome, a portable light source that can be attached to everyday objects to reprogram the color and texture of surfaces that come in contact with them. When PortaChrome makes contact with objects previously coated with photochromic dye, the UV and RGB LEDs inside PortaChrome create multi-color textures on the objects. In contrast to prior work, which used projectors for the color-change, PortaChrome has a thin and flexible form factor, which allows the color-change process to be integrated into everyday user interaction. Because of the close distance between the light source and the photochromic object, PortaChrome creates color textures in less than 4 minutes on average, which is 8 times faster than prior work. We demonstrate PortaChrome with four application examples, including data visualizations on textiles and dynamic designs on wearables.

Supplemental Material

MP4 File
Video Figure

References

[1]
Amani Alkayyali, Yasha Iravantchi, Jaylin Herskovitz, and Alanson P. Sample. 2022. UbiChromics: Enabling Ubiquitously Deployable Interactive Displays with Photochromic Paint. 6, ISS, Article 561 (2022). https://doi.org/10.1145/3567714
[2]
Joanna Berzowska. 2004. Very Slowly Animating Textiles: Shimmering Flower. In ACM SIGGRAPH 2004 Sketches(SIGGRAPH ’04). Association for Computing Machinery, 34. https://doi.org/10.1145/1186223.1186266
[3]
Joanna Berzowska and Marguerite Bromley. 2007. Soft computation through conductive textiles. In Proceedings of the International Foundation of Fashion Technology Institutes Conference. 12–15.
[4]
Eric Brockmeyer, Ivan Poupyrev, and Scott Hudson. 2013. PAPILLON: designing curved display surfaces with printed optics. In Proceedings of the 26th annual ACM symposium on User interface software and technology. 457–462.
[5]
Hyung Woo Choi, Dong-Wook Shin, Jiajie Yang, Sanghyo Lee, Cátia Figueiredo, Stefano Sinopoli, Kay Ullrich, Petar Jovančić, Alessio Marrani, Roberto Momentè, João Gomes, Rita Branquinho, Umberto Emanuele, Hanleem Lee, Sang Yun Bang, Sung-Min Jung, Soo Deok Han, Shijie Zhan, William Harden-Chaters, Yo-Han Suh, Xiang-Bing Fan, Tae Hoon Lee, Mohamed Chowdhury, Youngjin Choi, Salvatore Nicotera, Andrea Torchia, Francesc Mañosa Moncunill, Virginia Garcia Candel, Nelson Durães, Kiseok Chang, Sunghee Cho, Chul-Hong Kim, Marcel Lucassen, Ahmed Nejim, David Jiménez, Martijn Springer, Young-Woo Lee, SeungNam Cha, Jung Inn Sohn, Rui Igreja, Kyungmin Song, Pedro Barquinha, Rodrigo Martins, Gehan A. J. Amaratunga, Luigi G. Occhipinti, Manish Chhowalla, and Jong Min Kim. 2022. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nature Communications 13, 1 (2022), 814. https://doi.org/10.1038/s41467-022-28459-6
[6]
Seungyeop Choi, Woosung Jo, Yongmin Jeon, Seonil Kwon, Jeong Hyun Kwon, Young Hyun Son, Junmo Kim, Jun Hong Park, Hyuncheol Kim, Ho Seung Lee, Minwoo Nam, Eun Gyo Jeong, Jeong Bin Shin, Taek-Soo Kim, and Kyung Cheol Choi. 2020. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flexible Electronics 4, 1 (2020), 33. https://doi.org/10.1038/s41528-020-00096-3
[7]
Christine Dierk, TJ Rhodes, and Gavin Miller. 2022. Project Primrose: Reflective Light-Diffuser Modules for Non-Emissive Flexible Display Systems. ACM Symposium on User Interface Software and Technology (2022). https://doi.org/10.1145/3526113.3545625
[8]
Shreyosi Endow, M. Rakib, Anvay Srivastava, Sara Rastegarpouyani, and Cesar Torres. 2022. Embr: A Creative Framework for Hand Embroidered Liquid Crystal Textile Displays. CHI (2022). https://doi.org/10.1145/3491102.3502117
[9]
Antonio Gomes, Andrea Nesbitt, and R. Vertegaal. 2013. MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications. CHI (2013). https://doi.org/10.1145/2470654.2470737
[10]
Ollie Hanton, Mike Fraser, and Anne Roudaut. 2024. DisplayFab: The State of the Art and a Roadmap in the Personal Fabrication of Free-Form Displays Using Active Materials and Additive Manufacturing. In Proceedings of the CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, Article 333. https://doi.org/10.1145/3613904.3642708
[11]
Ollie Hanton, Zichao Shen, Mike Fraser, and A. Roudaut. 2022. FabricatINK: Personal Fabrication of Bespoke Displays Using Electronic Ink from Upcycled E Readers. International Conference on Human Factors in Computing Systems (2022). https://doi.org/10.1145/3491102.3501844
[12]
Ollie Hanton, Michael Wessely, Stefanie Mueller, Mike Fraser, and A. Roudaut. 2020. ProtoSpray: Combining 3D Printing and Spraying to Create Interactive Displays with Arbitrary Shapes. CHI Extended Abstracts (2020). https://doi.org/10.1145/3334480.3383174
[13]
Tomoko Hashida, Yasuaki Kakehi, and Takeshi Naemura. 2010. Photochromic Canvas Drawing with Patterned Light. In ACM SIGGRAPH 2010 Posters(SIGGRAPH ’10). Association for Computing Machinery, Article 26. https://doi.org/10.1145/1836845.1836873
[14]
Tomoko Hashida, Yasuaki Kakehi, and Takeshi Naemura. 2011. Photochromic Sculpture: Volumetric Color-Forming Pixels. In ACM SIGGRAPH 2011 Emerging Technologies(SIGGRAPH ’11). Association for Computing Machinery, Article 11. https://doi.org/10.1145/2048259.2048270
[15]
Sunao Hashimoto, Ryohei Suzuki, Youichi Kamiyama, Masahiko Inami, and Takeo Igarashi. 2013. LightCloth: Senseable Illuminating Optical Fiber Cloth for Creating Interactive Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’13). Association for Computing Machinery, 603–606. https://doi.org/10.1145/2470654.2470739
[16]
Walther Jensen, Ashley Colley, Jonna Häkkilä, Carlos Pinheiro, and Markus Löchtefeld. 2019. TransPrint: A Method for Fabricating Flexible Transparent Free-Form Displays. Adv. Hum. Comput. Interact. (2019). https://doi.org/10.1155/2019/1340182
[17]
Yuhua Jin, Isabel Qamar, Michael Wessely, Aradhana Adhikari, Katarina Bulovic, Parinya Punpongsanon, and Stefanie Mueller. 2019. Photo-Chromeleon: Re-Programmable Multi-Color Textures Using Photochromic Dyes. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology(UIST ’19). Association for Computing Machinery, 701–712. https://doi.org/10.1145/3332165.3347905
[18]
H. Kao, M. Mohan, C. Schmandt, J. Paradiso, and Katia Vega. 2016. ChromoSkin: Towards Interactive Cosmetics Using Thermochromic Pigments. CHI Extended Abstracts (2016). https://doi.org/10.1145/2851581.2890270
[19]
Hsin-Liu Kao, Christian Holz, Asta Roseway, Andres Calvo, and Chris Schmandt. 2016. DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials. In Proceedings of the 2016 ACM International Symposium on Wearable Computers. 16–23.
[20]
Vladan Koncar. 2005. Optical Fiber Fabric Displays. Opt. Photon. News 16, 4 (2005), 40–44. https://doi.org/10.1364/OPN.16.4.000040
[21]
Ivan Moreno, Maximino Avendaño-Alejo, and Rumen I Tzonchev. 2006. Designing light-emitting diode arrays for uniform near-field irradiance. Applied Optics 45, 10 (2006), 2265–2272.
[22]
S. Olberding, S. Ortega, K. Hildebrandt, and Jürgen Steimle. 2015. Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics. UIST (2015). https://doi.org/10.1145/2807442.2807494
[23]
S. Olberding, Michael Wessely, and Jürgen Steimle. 2014. PrintScreen: fabricating highly customizable thin-film touch-displays. UIST (2014). https://doi.org/10.1145/2642918.2647413
[24]
Atsumi Osada, Sae Takeshita, Machi Miyahara, and Masa Inakage. 2008. KAMI CHAT(ACE ’08). Association for Computing Machinery, 403. https://doi.org/10.1145/1501750.1501853
[25]
Parinya Punpongsanon, Xin Wen, David S. Kim, and Stefanie Mueller. 2018. ColorMod: Recoloring 3D Printed Objects Using Photochromic Inks. Association for Computing Machinery, 1–12. https://doi.org/10.1145/3173574.3173787
[26]
Michael Rein, Valentine Dominique Favrod, Chong Hou, Tural Khudiyev, Alexander Stolyarov, Jason Cox, Chia-Chun Chung, Chhea Chhav, Marty Ellis, John Joannopoulos, and Yoel Fink. 2018. Diode fibres for fabric-based optical communications. Nature 560, 7717 (2018), 214–218. https://doi.org/10.1038/s41586-018-0390-x
[27]
Daniel Saakes, Kevin Chiu, Tyler Hutchison, Biyeun M. Buczyk, Naoya Koizumi, Masahiko Inami, and Ramesh Raskar. 2010. Slow Display. In ACM SIGGRAPH 2010 Emerging Technologies(SIGGRAPH ’10). Association for Computing Machinery, Article 22, 1 pages. https://doi.org/10.1145/1836821.1836843
[28]
Daniel Saakes, Takahiro Tsujii, Kohei Nishimura, Tomoko Hashida, and Takeshi Naemura. 2013. Photochromic Carpet: Playful Floor Canvas with Color-Changing Footprints. In Advances in Computer Entertainment, Dennis Reidsma, Haruhiro Katayose, and Anton Nijholt (Eds.). Springer International Publishing, 622–625.
[29]
Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape Representation by Zippables. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 37, 4 (2018).
[30]
Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-Contrast Computational Caustic Design. ACM Trans. Graph. 33, 4 (2014), 11. https://doi.org/10.1145/2601097.2601200
[31]
Xiang Shi, Yong Zuo, Peng Zhai, Jiahao Shen, Yangyiwei Yang, Zhen Gao, Meng Liao, Jingxia Wu, Jiawei Wang, Xiaojie Xu, Qi Tong, Bo Zhang, Bingjie Wang, Xuemei Sun, Lihua Zhang, Qibing Pei, Dayong Jin, Peining Chen, and Huisheng Peng. 2021. Large-area display textiles integrated with functional systems. Nature 591, 7849 (2021), 240–245. https://doi.org/10.1038/s41586-021-03295-8
[32]
Kristen Shinohara, Cynthia L. Bennett, Wanda Pratt, and Jacob O. Wobbrock. 2018. Tenets for Social Accessibility: Towards Humanizing Disabled People in Design. ACM Trans. Access. Comput. 11, 1, Article 6 (mar 2018), 31 pages. https://doi.org/10.1145/3178855
[33]
Ivan Sutherland. 1968. The Ultimate Display. Proceedings of the IFIPS Congress 65(2):506-508. New York: IFIP 2 (01 1968).
[34]
Michael Wessely, Yuhua Jin, Cattalyya Nuengsigkapian, Aleksei Kashapov, Isabel P. S. Qamar, Dzmitry Tsetserukou, and Stefanie Mueller. 2021. ChromoUpdate: Fast Design Iteration of Photochromic Color Textures Using Grayscale Previews and Local Color Updates. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems(CHI ’21). Association for Computing Machinery, Article 666. https://doi.org/10.1145/3411764.3445391
[35]
Michael Wessely, Yuhua Jin, Cattalyya Nuengsigkapian, Aleksei Kashapov, Isabel P. S. Qamar, D. Tsetserukou, and Stefanie Müller. 2021. ChromoUpdate: Fast Design Iteration of Photochromic Color Textures Using Grayscale Previews and Local Color Updates. CHI (2021). https://doi.org/10.1145/3411764.3445391
[36]
Michael Wessely, Ticha Sethapakdi, C. Castillo, Jackson C. Snowden, Ollie Hanton, Isabel P. S. Qamar, Mike Fraser, A. Roudaut, and Stefanie Mueller. 2020. Sprayable User Interfaces: Prototyping Large-Scale Interactive Surfaces with Sensors and Displays. CHI (2020). https://doi.org/10.1145/3313831.3376249
[37]
Michael Wessely, Theophanis Tsandilas, and W. Mackay. 2016. Stretchis: Fabricating Highly Stretchable User Interfaces. UIST (2016). https://doi.org/10.1145/2984511.2984521
[38]
Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proceedings of the 25th annual ACM symposium on User interface software and technology. 589–598.
[39]
Zeyu Yan, Hsuanling Lee, Liang He, and Huaishu Peng. 2023. 3D Printing Magnetophoretic Displays. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology(UIST ’23). Association for Computing Machinery, New York, NY, USA, Article 54. https://doi.org/10.1145/3586183.3606804
[40]
Zeyu Yan, Anup Sathya, Sahra Yusuf, Jyh-Ming Lien, and Huaishu Peng. 2022. Fibercuit: Prototyping High-Resolution Flexible and Kirigami Circuits with a Fiber Laser Engraver. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology(UIST ’22). Article 12. https://doi.org/10.1145/3526113.3545652

Index Terms

  1. PortaChrome: A Portable Contact Light Source for Integrated Re-Programmable Multi-Color Textures

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    UIST '24: Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology
    October 2024
    2334 pages
    ISBN:9798400706288
    DOI:10.1145/3654777
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 October 2024

    Check for updates

    Author Tags

    1. color-changing material
    2. digital fabrication
    3. display fabrication
    4. photochromic dyes
    5. programmable textures

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    UIST '24

    Acceptance Rates

    Overall Acceptance Rate 561 of 2,567 submissions, 22%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 497
      Total Downloads
    • Downloads (Last 12 months)497
    • Downloads (Last 6 weeks)95
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media