skip to main content
article

Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

Published:28 March 2024Publication History
Skip Abstract Section

Abstract

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available.

In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM computing surveys (CSUR) 41(3) (2009) 1--58Google ScholarGoogle Scholar
  2. Denning, D.E.: An intrusion-detection model. IEEE Transactions on software engineering (2) (1987) 222-- 232Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Das, M., Parthasarathy, S.: Anomaly detection and spatio-temporal analysis of global climate system. In: Proceedings of the third international workshop on knowledge discovery from sensor data. (2009) 142--150Google ScholarGoogle Scholar
  4. Schlegl, T., Seeb¨ock, P., Waldstein, S.M., Schmidt- Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging, Springer (2017) 146--157Google ScholarGoogle Scholar
  5. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: A survey. Journal of Network and Computer Applications 68 (2016) 90--113Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, PMLR (2017) 1321-- 1330Google ScholarGoogle Scholar
  7. Malhotra, P., Vig, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings. Volume 89., Presses universitaires de Louvain (2015)Google ScholarGoogle Scholar
  8. Sabuhi, M., Zhou, M., Bezemer, C.P., Musilek, P.: Applications of generative adversarial networks in anomaly detection: A systematic literature review. IEEE Access (2021)Google ScholarGoogle Scholar
  9. Di Mattia, F., Galeone, P., De Simoni, M., Ghelfi, E.: A survey on gans for anomaly detection. arXiv preprint arXiv:1906.11632 (2019)Google ScholarGoogle Scholar
  10. Hawkins, D.M.: Identification of outliers. Volume 11. Springer (1980)Google ScholarGoogle ScholarCross RefCross Ref
  11. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain mri segmentation: state of the art and future directions. Journal of digital imaging 30(4) (2017) 449--459Google ScholarGoogle Scholar
  12. Liu, F., Jang, H., Kijowski, R., Bradshaw, T., McMillan, A.B.: Deep learning mr imaging--based attenuation correction for pet/mr imaging. Radiology 286(2) (2018) 676--684Google ScholarGoogle ScholarCross RefCross Ref
  13. Ding, Y., Sohn, J.H., Kawczynski, M.G., Trivedi, H., Harnish, R., Jenkins, N.W., Lituiev, D., Copeland, T.P., Aboian, M.S., Mari Aparici, C., et al.: A deep learning model to predict a diagnosis of alzheimer disease by using 18f-fdg pet of the brain. Radiology 290(2) (2019) 456--464Google ScholarGoogle ScholarCross RefCross Ref
  14. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine 25(1) (2019) 65Google ScholarGoogle Scholar
  15. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data mining and knowledge discovery 29(3) (2015) 626--688Google ScholarGoogle Scholar
  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)Google ScholarGoogle Scholar
  17. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2019) 481--490Google ScholarGoogle Scholar
  18. Yeung, D.Y., Chow, C.: Parzen-window network intrusion detectors. In: Object recognition supported by user interaction for service robots. Volume 4., IEEE (2002) 385--388Google ScholarGoogle Scholar
  19. Berg, A., Ahlberg, J., Felsberg, M.: Unsupervised learning of anomaly detection from contaminated image data using simultaneous encoder training. arXiv preprint arXiv:1905.11034 (2019)Google ScholarGoogle Scholar
  20. Pimentel, T., Monteiro, M., Viana, J., Veloso, A., Ziviani, N.: A generalized active learning approach for unsupervised anomaly detection. stat 1050 (2018) 23Google ScholarGoogle Scholar
  21. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing systems. (2014) 2672--2680Google ScholarGoogle Scholar
  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)Google ScholarGoogle Scholar
  23. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2019) 4401--4410Google ScholarGoogle Scholar
  24. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, Springer (2019) 703--716Google ScholarGoogle Scholar
  25. L¨uer, F., Mautz, D., B¨ohm, C.: Anomaly detection in time series using generative adversarial networks. In: 2019 International Conference on Data Mining Workshops (ICDMW), IEEE (2019) 1047--1048Google ScholarGoogle Scholar
  26. Bojchevski, A., Shchur, O., Z¨ugner, D., G¨unnemann, S.: Netgan: Generating graphs via random walks. arXiv preprint arXiv:1803.00816 (2018)Google ScholarGoogle Scholar
  27. Wang, C., Zhang, Y.M., Liu, C.L.: Anomaly detection via minimum likelihood generative adversarial networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE (2018) 1121--1126Google ScholarGoogle Scholar
  28. Deecke, L., Vandermeulen, R.L., Mandt, S., Kloft, M.: Image anomaly detection with generative adversarial networks. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer (2018) 3--17Google ScholarGoogle Scholar
  29. Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI. (2019) 4433--4439Google ScholarGoogle Scholar
  30. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Processing 99 (2014) 215--249Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407 (2019)Google ScholarGoogle Scholar
  32. Brophy, E., Wang, Z., She, Q., Ward, T.: Generative adversarial networks in time series: A survey and taxonomy. arXiv preprint arXiv:2107.11098 (2021)Google ScholarGoogle Scholar
  33. Aghakhani, H., Machiry, A., Nilizadeh, S., Kruegel, C., Vigna, G.: Detecting deceptive reviews using generative adversarial networks. In: 2018 IEEE Security and Privacy Workshops (SPW), IEEE (2018) 89--95Google ScholarGoogle Scholar
  34. Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C., Sebe, N.: Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE International Conference on Image Processing (ICIP), IEEE (2017) 1577--1581Google ScholarGoogle Scholar
  35. Schlegl, T., Seeb¨ock, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis 54 (2019) 30--44Google ScholarGoogle Scholar
  36. L¨uer, F., Dolgich, M., Weber, T., B¨ohm, C.: Adversarial anomaly detection using gaussian priors and nonlinear anomaly scores. In: 2023 International Conference on Data Mining Workshops (ICDMW), IEEE (2023)Google ScholarGoogle Scholar
  37. Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., M¨uller, E., Kloft, M.: Deep one-class classification. In: International conference on machine learning. (2018) 4393--4402Google ScholarGoogle Scholar
  38. Perera, P., Nallapati, R., Xiang, B.: Ocgan: Oneclass novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2019) 2898--2906Google ScholarGoogle Scholar
  39. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R., eds.: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5--10, 2016, Barcelona, Spain. (2016) 2226--2234Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)Google ScholarGoogle Scholar
  41. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: Advances in neural information processing systems. (2017) 5767--5777Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net (2018)Google ScholarGoogle Scholar
  43. Tong, A., Wolf, G., Krishnaswamy, S.: A lipschitzconstrained anomaly discriminator framework. arXiv preprint arXiv:1905.10710 (2019)Google ScholarGoogle Scholar
  44. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)Google ScholarGoogle Scholar
  45. Baur, C., Albarqouni, S., Navab, N.: Generating highly realistic images of skin lesions with gans. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Springer (2018) 260-- 267Google ScholarGoogle Scholar
  46. Kimura, M., Yanagihara, T.: Anomaly detection using gans for visual inspection in noisy training data. In: Asian Conference on Computer Vision, Springer (2018) 373--385Google ScholarGoogle Scholar
  47. Yoon, S., Noh, Y.K., Park, F.C.: Autoencoding under normalization constraints. arXiv preprint arXiv:2105.05735 (2021)Google ScholarGoogle Scholar
  48. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)Google ScholarGoogle Scholar
  49. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2018) 3379-- 3388Google ScholarGoogle Scholar
  50. Koizumi, Y., Saito, S., Uematsu, H., Kawachi, Y., Harada, N.: Unsupervised detection of anomalous sound based on deep learning and the neyman--pearson lemma. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27(1) (2018) 212--224Google ScholarGoogle Scholar
  51. Kimura, D., Chaudhury, S., Narita, M., Munawar, A., Tachibana, R.: Adversarial discriminative attention for robust anomaly detection. In: The IEEE Winter Conference on Applications of Computer Vision. (2020) 2172--2181Google ScholarGoogle Scholar
  52. Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., He, X.: Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering (2019)Google ScholarGoogle Scholar
  53. Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.R.: Good semi-supervised learning that requires a bad gan. In: Advances in neural information processing systems. (2017) 6510--6520Google ScholarGoogle Scholar
  54. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 613--628Google ScholarGoogle Scholar
  55. M., Bischl, B.: Robust anomaly detection in images using adversarial autoencoders. arXiv preprint arXiv:1901.06355 (2019)Google ScholarGoogle Scholar
  56. Salehi, M., Arya, A., Pajoum, B., Otoofi, M., Shaeiri, A., Rohban, M.H., Rabiee, H.R.: Arae: Adversarially robust training of autoencoders improves novelty detection. Neural Networks 144 (2021) 726--736Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. T.: Anomaly scores for generative models. arXiv preprint arXiv:1905.11890 (2019)Google ScholarGoogle Scholar
  58. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE 2(1) (2015) 1--18Google ScholarGoogle Scholar
  59. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencoders. In: Advances in neural information processing systems. (2018) 6822--6833Google ScholarGoogle Scholar
  60. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: Advances in Neural Information Processing Systems. (2019) 125--136Google ScholarGoogle Scholar
  61. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)Google ScholarGoogle Scholar
  62. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE 2(1) (2015) 1--18Google ScholarGoogle Scholar
  63. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), IEEE (2018) 727--736Google ScholarGoogle Scholar
  64. Choi, H., Jang, E., Alemi, A.A.: Waic, but why? generative ensembles for robust anomaly detection. arXiv preprint arXiv:1810.01392 (2018)Google ScholarGoogle Scholar
  65. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don't know? arXiv preprint arXiv:1810.09136 (2018)Google ScholarGoogle Scholar
  66. Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., Courville, A.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)Google ScholarGoogle Scholar
  67. Donahue, J., Kr¨ahenb¨uhl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)Google ScholarGoogle Scholar
  68. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)Google ScholarGoogle Scholar
  69. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian conference on computer vision, Springer (2018) 622--637Google ScholarGoogle Scholar
  70. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. (2017) 2223-- 2232Google ScholarGoogle Scholar
  71. Hirose, N., Sadeghian, A., V´azquez, M., Goebel, P., Savarese, S.: Gonet: A semi-supervised deep learning approach for traversability estimation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2018) 3044--3051Google ScholarGoogle Scholar
  72. Armanious, K., Jiang, C., Abdulatif, S., K¨ustner, T., Gatidis, S., Yang, B.: Unsupervised medical image translation using cycle-medgan. In: 2019 27th European Signal Processing Conference (EUSIPCO), IEEE (2019) 1--5Google ScholarGoogle Scholar
  73. van Hespen, K.M., Zwanenburg, J.J., Dankbaar, J.W., Geerlings, M.I., Hendrikse, J., Kuijf, H.J.: An anomaly detection approach to identify chronic brain infarcts on mri. Scientific Reports 11(1) (2021) 1--10Google ScholarGoogle ScholarCross RefCross Ref
  74. Kachuee, M., Fazeli, S., Sarrafzadeh, M.: Ecg heartbeat classification: A deep transferable representation. In: 2018 IEEE international conference on healthcare informatics (ICHI), IEEE (2018) 443--444Google ScholarGoogle Scholar
  75. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)Google ScholarGoogle Scholar
  76. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.K.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, Springer (2019) 703--716Google ScholarGoogle Scholar
  77. V., Pevn'y, T.: Are generative deep models for novelty detection truly better? arXiv preprint arXiv:1807.05027 (2018)Google ScholarGoogle Scholar
  78. Mahmood, F., Borders, D., Chen, R., McKay, G.N., Salimian, K.J., Baras, A., Durr, N.J.: Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE transactions on medical imaging (2019)Google ScholarGoogle Scholar
  79. Luo, Y., Cai, X., Zhang, Y., Xu, J., et al.: Multivariate time series imputation with generative adversarial networks. In: Advances in Neural Information Processing Systems. (2018) 1596--1607Google ScholarGoogle Scholar
  80. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocomputing 321 (2018) 321--331Google ScholarGoogle ScholarCross RefCross Ref
  81. Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D.A., Hern´andez, M.V., Wardlaw, J., Rueckert, D.: Gan augmentation: Augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863 (2018)Google ScholarGoogle Scholar
  82. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE (2018) 289--293Google ScholarGoogle ScholarCross RefCross Ref
  83. Han, C., Murao, K., Noguchi, T., Kawata, Y., Uchiyama, F., Rundo, L., Nakayama, H., Satoh, S.: Learning more with less: Conditional pggan-based data augmentation for brain metastases detection using highly-rough annotation on mr images. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (2019) 119--127Google ScholarGoogle Scholar
  84. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., Furukawa, Y., Mauri, G., Nakayama, H.: Gan-based synthetic brain mr image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) 734--738Google ScholarGoogle ScholarCross RefCross Ref
  85. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. (2016) 308--318Google ScholarGoogle Scholar
  86. Lim, S.K., Loo, Y., Tran, N.T., Cheung, N.M., Roig, G., Elovici, Y.: Doping: Generative data augmentation for unsupervised anomaly detection with gan. In: 2018 IEEE International Conference on Data Mining (ICDM), IEEE (2018) 1122--1127Google ScholarGoogle Scholar
  87. Madani, A., Moradi, M., Karargyris, A., Syeda- Mahmood, T.: Semi-supervised learning with generative adversarial networks for chest x-ray classification with ability of data domain adaptation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) 1038--1042Google ScholarGoogle ScholarCross RefCross Ref
  88. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain mri using constrained adversarial autoencoders. arXiv preprint arXiv:1806.04972 (2018)Google ScholarGoogle Scholar
  89. Theis, L., Oord, A.v.d., Bethge, M.: A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844 (2015)Google ScholarGoogle Scholar

Index Terms

  1. Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Article Metrics

        • Downloads (Last 12 months)41
        • Downloads (Last 6 weeks)16

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader