skip to main content
10.1145/3656650.3656748acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaviConference Proceedingsconference-collections
poster

Adaptive End-User Development for Social Robotics

Published: 03 June 2024 Publication History

Abstract

This article outlines an approach to democratizing interactions between humans and robots, focusing on the development of a user-friendly solution for the Pepper humanoid robot. It emphasizes a multimodal End-User Development programming style to make robotic systems more accessible and adaptable for individuals with limited technical skills. By incorporating multimodal programming, smart systems, system adaptability, and emphasizing social interactions, this research aims to refine the interface between humans and robots, enhancing user engagement and acceptance. The envisioned system integrates the Trigger-Action Programming paradigm with vocal authoring to overcome expressiveness limitations and facilitate a more intuitive user experience.

References

[1]
Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A Survey on End-User Robot Programming. Comput. Surveys 54, 8 (Oct. 2021), 164:1–164:36. https://doi.org/10.1145/3466819
[2]
Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno. 2019. End-user development, end-user programming and end-user software engineering: A systematic mapping study. Journal of Systems and Software 149 (March 2019), 101–137. https://doi.org/10.1016/j.jss.2018.11.041
[3]
Sharon E. Beatty, Morris Mayer, James E. Coleman, Kristy Ellis Reynolds, and Jungki Lee. 1996. Customer-sales associate retail relationships. Journal of Retailing 72, 3 (Sept. 1996), 223–247. https://doi.org/10.1016/S0022-4359(96)90028-7
[4]
Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He, Guan Wang, Michael L. Littman, and Blase Ur. 2019. How Users Interpret Bugs in Trigger-Action Programming. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300782
[5]
Marco Canevelli, Ilaria Cova, Giulia Remoli, Ilaria Bacigalupo, Emanuela Salvi, Giorgia Maestri, Alessia Nicotra, Martina Valletta, Antonio Ancidoni, Francesco Sciancalepore, Silvia Cascini, Anna Maria Bargagli, Simone Pomati, Leonardo Pantoni, Nicola Vanacore, ImmiDem Study Network, and ImmiDem Study Group. 2022. A nationwide survey of Italian Centers for Cognitive Disorders and Dementia on the provision of care for international migrants. European Journal of Neurology 29, 7 (2022), 1892–1902. https://doi.org/10.1111/ene.15297 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ene.15297.
[6]
Marco Canevelli, Alessandra Di Pucchio, Fabrizio Marzolini, Flavia Mayer, Marco Massari, Emanuela Salvi, Ilaria Palazzesi, Eleonora Lacorte, Ilaria Bacigalupo, Teresa Di Fiandra, and Nicola Vanacore. 2021. A National Survey of Centers for Cognitive Disorders and Dementias in Italy. Journal of Alzheimer’s disease: JAD 83, 4 (2021), 1849–1857. https://doi.org/10.3233/JAD-210634
[7]
J-G Cegarra-Navarro and M-T Sánchez-Polo. 2008. Linking the individual forgetting context with customer capital from a seller’s perspective. Journal of the Operational Research Society 59, 12 (Dec. 2008), 1614–1623. https://doi.org/10.1057/palgrave.jors.2602491 Publisher: Taylor & Francis _eprint: https://doi.org/10.1057/palgrave.jors.2602491.
[8]
Nathalia Cespedes, Marcela Munera, Catalina Gomez, and Carlos A. Cifuentes. 2020. Social Human-Robot Interaction for Gait Rehabilitation. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 28, 6 (June 2020), 1299–1307. https://doi.org/10.1109/TNSRE.2020.2987428
[9]
Derwin K. Chan, Chris Lonsdale, Po Y. Ho, Patrick S. Yung, and Kai M. Chan. 2009. Patient motivation and adherence to postsurgery rehabilitation exercise recommendations: the influence of physiotherapists’ autonomy-supportive behaviors. Archives of Physical Medicine and Rehabilitation 90, 12 (Dec. 2009), 1977–1982. https://doi.org/10.1016/j.apmr.2009.05.024
[10]
Daniel P. Davison, Frances M. Wijnen, Vicky Charisi, Jan van der Meij, Vanessa Evers, and Dennis Reidsma. 2020. Working with a Social Robot in School: A Long-Term Real-World Unsupervised Deployment. In 2020 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 63–72. https://ieeexplore.ieee.org/document/9484296 ISSN: 2167-2148.
[11]
Frederique de Vignemont and Tania Singer. 2006. The empathic brain: how, when and why?Trends in Cognitive Sciences 10, 10 (Oct. 2006), 435–441. https://doi.org/10.1016/j.tics.2006.08.008
[12]
David Feil-Seifer and Maja J. Matarić. 2011. Socially Assistive Robotics. IEEE Robotics & Automation Magazine 18, 1 (March 2011), 24–31. https://doi.org/10.1109/MRA.2010.940150 Conference Name: IEEE Robotics & Automation Magazine.
[13]
Ruben Fuentes-Alvarez, Alejandro Morfin-Santana, Karlo Ibañez, Isaac Chairez, and Sergio Salazar. 2023. Energetic optimization of an autonomous mobile socially assistive robot for autism spectrum disorder. Frontiers in Robotics and AI 9 (Jan. 2023), 1053115. https://doi.org/10.3389/frobt.2022.1053115
[14]
Justin Huang and Maya Cakmak. 2015. Supporting mental model accuracy in trigger-action programming. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp ’15). Association for Computing Machinery, New York, NY, USA, 215–225. https://doi.org/10.1145/2750858.2805830
[15]
K. A. Ingraham, C. D. Remy, and E. J. Rouse. 2022. The role of user preference in the customized control of robotic exoskeletons. Science Robotics 7, 64 (March 2022), eabj3487. https://doi.org/10.1126/scirobotics.abj3487
[16]
Min Hun Lee, D. Siewiorek, A. Smailagic, Alexandre Bernardino, and S. Badia. 2020. Designing Personalized Interaction of a Socially Assistive Robot for Stroke Rehabilitation Therapy. ArXiv (July 2020). https://www.semanticscholar.org/paper/Designing-Personalized-Interaction-of-a-Socially-Lee-Siewiorek/d3d3112fa50743a5bfe2037ee39398e766f2aefd
[17]
Nicola Leonardi, Marco Manca, Fabio Paternò, and Carmen Santoro. 2019. Trigger-Action Programming for Personalising Humanoid Robot Behaviour. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300675
[18]
Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-User Development: An Emerging Paradigm. In End User Development, Henry Lieberman, Fabio Paternò, and Volker Wulf (Eds.). Springer Netherlands, Dordrecht, 1–8. https://doi.org/10.1007/1-4020-5386-X_1
[19]
Daniel Macis, Sara Perilli, and Cristina Gena. 2022. Employing Socially Assistive Robots in Elderly Care. Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization (July 2022), 130–138. https://doi.org/10.1145/3511047.3537687 Conference Name: UMAP ’22: 30th ACM Conference on User Modeling, Adaptation and Personalization ISBN: 9781450392327 Place: Barcelona Spain Publisher: ACM.
[20]
Marco Manca, Fabio Paternò, Carmen Santoro, Eleonora Zedda, Chiara Braschi, Roberta Franco, and Alessandro Sale. 2021. The impact of serious games with humanoid robots on mild cognitive impairment older adults. International Journal of Human-Computer Studies 145 (Jan. 2021), 102509. https://doi.org/10.1016/j.ijhcs.2020.102509
[21]
George Mois, Mimi U. Trinh, Afnaan F. Afsar Ali, Lizandra Garcia Lupi Vergara, and Wendy A. Rogers. 2023. Design Considerations for a Socially Assistive Robots in the Home to Support Older Adults. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 67, 1 (Sept. 2023), 542–548. https://doi.org/10.1177/21695067231194324
[22]
Irena Papadopoulos, Steve Wright, Christina Koulouglioti, Sheila Ali, Runa Lazzarino, Ángel Martín-García, Cristina Oter-Quintana, Christiana Kouta, Elena Rousou, Katalin Papp, Radka Krepinska, Valerie Tothova, Maria Malliarou, Paraskevi Apostolara, Małgorzata Lesińska-Sawicka, Małgorzata Nagorska, Miroslava Liskova, Line Nortvedt, Lise-Merete Alpers, Sylvia Biglete-Pangilinan, Ma Florinda Oconer-Rubiano, Wireeporn Chaisetsampun, Nutchanath Wichit, Akhtar-Ebrahimi Ghassemi, Ezzat Jafarjalal, Akile Zorba, Andrea Kuckert-Wöstheinrich, Rabin Malla, Tomiko Toda, Özlem Akman, Candan Öztürk, Teresa Puvimanasinghe, Tahereh Ziaian, Orit Eldar-Regev, and Sara Nissim. 2023. Socially assistive robots in health and social care: Acceptance and cultural factors. Results from an exploratory international online survey. Japan journal of nursing science: JJNS 20, 2 (April 2023), e12523. https://doi.org/10.1111/jjns.12523
[23]
David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction(HRI ’23). Association for Computing Machinery, New York, NY, USA, 584–593. https://doi.org/10.1145/3568162.3576991
[24]
Sarah M. Rabbitt, Alan E. Kazdin, and Brian Scassellati. 2015. Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clinical Psychology Review 35 (Feb. 2015), 35–46. https://doi.org/10.1016/j.cpr.2014.07.001
[25]
Denniss Raigoso, Nathalia Céspedes, Carlos A. Cifuentes, Antonio J. del Ama, and Marcela Múnera. 2021. A Survey on Socially Assistive Robotics: Clinicians’ and Patients’ Perception of a Social Robot within Gait Rehabilitation Therapies. Brain Sciences 11, 6 (June 2021), 738. https://doi.org/10.3390/brainsci11060738
[26]
Miguel Sarabia, Noel Young, Kelly Canavan, Trudi Edginton, Yiannis Demiris, and Marcela P. Vizcaychipi. 2018. Assistive Robotic Technology to Combat Social Isolation in Acute Hospital Settings. International Journal of Social Robotics 10, 5 (Nov. 2018), 607–620. https://doi.org/10.1007/s12369-017-0421-z
[27]
David Silvera-Tawil, Susan Bruck, Yi Xiao, and DanaKai Bradford. 2022. Socially-Assistive Robots to Support Learning in Students on the Autism Spectrum: Investigating Educator Perspectives and a Pilot Trial of a Mobile Platform to Remove Barriers to Implementation. Sensors 22, 16 (Aug. 2022), 6125. https://doi.org/10.3390/s22166125
[28]
Laura Stegner, David Porfirio, Mark Roberts, and Laura M. Hiatt. 2024. Considerations for End-User Development in the Caregiving Domain. http://arxiv.org/abs/2402.17836 arXiv:2402.17836 [cs].
[29]
Hang Su, Wen Qi, Jiahao Chen, Chenguang Yang, Juan Sandoval, and Med Amine Laribi. 2023. Recent advancements in multimodal human-robot interaction. Frontiers in Neurorobotics 17 (2023), 1084000. https://doi.org/10.3389/fnbot.2023.1084000
[30]
Rianne Van Den Berghe, Josje Verhagen, Ora Oudgenoeg-Paz, Sanne Van Der Ven, and Paul Leseman. 2019. Social Robots for Language Learning: A Review. Review of Educational Research 89, 2 (April 2019), 259–295. https://doi.org/10.3102/0034654318821286
[31]
Marcelo Worsley, David Barel, Lydia Davison, Thomas Large, and Timothy Mwiti. 2018. Multimodal Interfaces for Inclusive Learning. In Artificial Intelligence in Education(Lecture Notes in Computer Science), Carolyn Penstein Rosé, Roberto Martínez-Maldonado, H. Ulrich Hoppe, Rose Luckin, Manolis Mavrikis, Kaska Porayska-Pomsta, Bruce McLaren, and Benedict du Boulay (Eds.). Springer International Publishing, Cham, 389–393. https://doi.org/10.1007/978-3-319-93846-2_73

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
AVI '24: Proceedings of the 2024 International Conference on Advanced Visual Interfaces
June 2024
578 pages
ISBN:9798400717642
DOI:10.1145/3656650
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 June 2024

Check for updates

Author Tags

  1. End-User Development
  2. Human-Robot Interaction

Qualifiers

  • Poster
  • Research
  • Refereed limited

Conference

AVI 2024

Acceptance Rates

AVI '24 Paper Acceptance Rate 21 of 82 submissions, 26%;
Overall Acceptance Rate 128 of 490 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 32
    Total Downloads
  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)10
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media