skip to main content
10.1145/3661725.3661780acmotherconferencesArticle/Chapter ViewAbstractPublication PagescmldsConference Proceedingsconference-collections
research-article

Computational Ghost Imaging Base on Bidirectional Recurrent Neural Network

Published: 20 June 2024 Publication History

Abstract

In recent decades, Ghost Imaging (GI) has emerged as a focal point of research attention among scholars. The imaging quality of GI remains a challenge despite extensive research. In this study, we propose a new model aimed at improving imaging quality. Being inspired by the possible nonlinear connections in GI, we have developed a model based on bidirectional recurrent neural networks (BI-RNN), named GI-BRNN(ghost imaging base on bidirectional recurrent neural network). This model leverages the bidirectional recurrent mechanism and exhibits higher peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) compared to traditional algorithms. The results of this study demonstrate that the GI-BRNN model significantly improves the quality of ghost imaging. This research provides new insights and approaches for the application of deep learning in the field of GI.

References

[1]
Pittman, T. B., Shih, Y. H., Strekalov, D. V., & Sergienko, A. V. (1995). Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52(5), R3429.
[2]
Zibang, Z., Tian'ao, L., Junzheng, P., & Jingang, Z. (2019). Fourier single-pixel imaging techniques and applications. Infrared and Laser Engineering, 48(6), 603002-0603002.
[3]
Ferri, F., Magatti, D., Lugiato, L. A., & Gatti, A. (2010). Differential ghost imaging. Physical review letters, 104(25), 253603.
[4]
Bennink, R. S., Bentley, S. J., & Boyd, R. W. (2002). “Two-photon” coincidence imaging with a classical source. Physical review letters, 89(11), 113601.
[5]
Cheng, J., & Han, S. (2004). Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical review letters, 92(9), 093903.
[6]
A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[7]
Zhang, Z., Ma, X., & Zhong, J. (2015). Single-pixel imaging by means of Fourier spectrum acquisition. Nature communications, 6(1), 6225.
[8]
Zhang, Z., Wang, X., Zheng, G., & Zhong, J. (2017). Fast Fourier single-pixel imaging via binary illumination. Scientific reports, 7(1), 12029.
[9]
Zhang, Z., Wang, X., Zheng, G., & Zhong, J. (2017). Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 25(16), 19619-19639.
[10]
Katz, O., Bromberg, Y., & Silberberg, Y. (2009). Compressive ghost imaging. Applied Physics Letters, 95(13).
[11]
Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T., Kelly, K. F., & Baraniuk, R. G. (2008). Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 25(2), 83-91.
[12]
Wang, L., & Zhao, S. (2016). Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photonics Research, 4(6), 240-244.
[13]
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., & Situ, G. (2017). Deep-learning-based ghost imaging. Scientific reports, 7(1), 17865.
[14]
Shimobaba, T., Endo, Y., Nishitsuji, T., Takahashi, T., Nagahama, Y., Hasegawa, S., ... & Ito, T. (2018). Computational ghost imaging using deep learning. Optics Communications, 413, 147-151.
[15]
He, Y., Wang, G., Dong, G., Zhu, S., Chen, H., Zhang, A., & Xu, Z. (2018). Ghost imaging based on deep learning. Scientific reports, 8(1), 6469.
[16]
Wang, F., Wang, H., Wang, H., Li, G., & Situ, G. (2019). Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Optics express, 27(18), 25560-25572.
[17]
Wu, H., Wang, R., Zhao, G., Xiao, H., Wang, D., Liang, J., ... & Zhang, X. (2020). Sub-Nyquist computational ghost imaging with deep learning. Optics express, 28(3), 3846-3853.
[18]
Hoshi, I., Shimobaba, T., Kakue, T., & Ito, T. (2020). Single-pixel imaging using a recurrent neural network combined with convolutional layers. Optics Express, 28(23), 34069-34078.
[19]
Ni, Y., Zhou, D., Yuan, S., Bai, X., Xu, Z., Chen, J., ... & Zhou, X. (2021). Color computational ghost imaging based on a generative adversarial network. Optics Letters, 46(8), 1840-1843.
[20]
He, Y., Duan, S., Yuan, Y., Chen, H., Li, J., & Xu, Z. (2022). Semantic ghost imaging based on recurrent-neural-network. Optics Express, 30(13), 23475-23484.
[21]
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11), 2673-2681.
[22]
McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Processing Magazine, 34(6), 85-95.
[23]
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
CMLDS '24: Proceedings of the International Conference on Computing, Machine Learning and Data Science
April 2024
381 pages
ISBN:9798400716393
DOI:10.1145/3661725
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 June 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BI-RNN(bidirectional recurrent neural networks)
  2. Ghost imaging
  3. imaging quality

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

CMLDS 2024

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 12
    Total Downloads
  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media