skip to main content
10.1145/3664647.3680566acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article
Open access

Deciphering Perceptual Quality in Colored Point Cloud: Prioritizing Geometry or Texture Distortion?

Published: 28 October 2024 Publication History

Abstract

Point clouds represent one of the prevalent formats for 3D content. Distortions introduced at various stages in the point cloud processing pipeline affect the visual quality, altering their geometric composition, texture information, or both. Understanding and quantifying the impact of the distortion domain on visual quality is vital to driving rate optimization and guiding post-processing steps to improve the quality of experience. In this paper, we propose a multi-task guided multi-modality no reference metric (M3-Unity), which utilizes 4 types of modalities across attributes and dimensionalities to represent point clouds. An attention mechanism establishes inter/intra associations among 3D/2D patches, which can complement each other, yielding local and global features, to fit the highly nonlinear property of the human vision system. A multi-task decoder involving distortion type classification selects the best association among 4 modalities, aiding the regression task and enabling the in-depth analysis of the interplay between geometrical and textural distortions. Furthermore, our framework design and attention strategy enable us to measure the impact of individual attributes and their combinations, providing insights into how these associations contribute particularly in relation to distortion type. Extensive experimental results on 4 datasets consistently outperform the state-of-the-art metrics by a large margin. The code is available at https://github.com/cwi-dis/ACMMM2024-Oral.

References

[1]
D. Graziosi A. Zaghetto and A. Tabatabai. 2022. Density-to-density (d3- psnr. ISO/IEC JTC1/SC29 WG7 input document M61195 (2022).
[2]
Ali Ak, Emin Zerman, Maurice Quach, Aladine Chetouani, Aljosa Smolic, Giuseppe Valenzise, and Patrick Le Callet. 2024. BASICS: Broad Quality Assessment of Static Point Clouds in a Compression Scenario. IEEE Transactions on Multimedia (2024), 1--13. https://doi.org/10.1109/TMM.2024.3355642
[3]
Evangelos Alexiou and Touradj Ebrahimi. 2020. Towards a point cloud structural similarity metric. In ICMEW. 1--6.
[4]
Evangelos Alexiou, Yana Nehmé, Emin Zerman, Irene Viola, Guillaume Lavoué, Ali Ak, Aljosa Smolic, Patrick Le Callet, and Pablo Cesar. 2023. Chapter 18 - Subjective and objective quality assessment for volumetric video. In Immersive Video Technologies, Giuseppe Valenzise, Martin Alain, Emin Zerman, and Cagri Ozcinar (Eds.). Academic Press, 501--552. https://doi.org/10.1016/B978-0--32- 391755--1.00024--9
[5]
Evangelos Alexiou, Evgeniy Upenik, and Touradj Ebrahimi. 2017. Towards subjective quality assessment of point cloud imaging in augmented reality. In 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). 1--6. https://doi.org/10.1109/MMSP.2017.8122237
[6]
Evangelos Alexiou, Irene Viola, Tomás M Borges, Tiago A Fonseca, Ricardo L De Queiroz, and Touradj Ebrahimi. 2019. A comprehensive study of the rate-distortion performance in MPEG point cloud compression. APSIPA Transactions on Signal and Information Processing 8 (2019), e27.
[7]
Evangelos Alexiou, Xuemei Zhou, Irene Viola, and Pablo Cesar. 2021. PointPCA: Point cloud objective quality assessment using PCA-based descriptors. arXiv preprint arXiv:2111.12663 (2021).
[8]
Jochen Antkowiak, TDF Jamal Baina, France Vittorio Baroncini, Noel Chateau, France FranceTelecom, Antonio Claudio França Pessoa, FUB Stephanie Colonnese, Italy Laura Contin, Jorge Caviedes, and France Philips. 2000. Final report from the video quality experts group on the validation of objective models of video quality assessment. (March 2000).
[9]
Maarten Bassier, Stan Vincke, Heinder De Winter, and Maarten Vergauwen. 2020. Drift invariant metric quality control of construction sites using BIM and point cloud data. ISPRS International Journal of Geo-Information 9, 9 (2020), 545.
[10]
Wei Cao, Jiayi Wu, Yufeng Shi, and Dong Chen. 2022. Restoration of Individual Tree Missing Point Cloud Based on Local Features of Point Cloud. Remote Sensing 14, 6 (2022), 1346.
[11]
Yunning Cao, Ye Ma, Min Zhou, Chuanbin Liu, Hongtao Xie, Tiezheng Ge, and Yuning Jiang. 2022. Geometry aligned variational transformer for image-conditioned layout generation. In ACM MM. 1561--1571.
[12]
Luis A da Silva Cruz, Emil Dumi?, Evangelos Alexiou, Joao Prazeres, Rafael Duarte, Manuela Pereira, Antonio Pinheiro, and Touradj Ebrahimi. 2019. Point cloud quality evaluation: Towards a definition for test conditions. In 2019 eleventh international conference on quality of multimedia experience (QoMEX). IEEE, 1--6.
[13]
Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In CVPR. Ieee, 248--255.
[14]
Yu Fan, Zicheng Zhang, Wei Sun, Xiongkuo Min, Ning Liu, Quan Zhou, Jun He, Qiyuan Wang, and Guangtao Zhai. 2022. A no-reference quality assessment metric for point cloud based on captured video sequences. In 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 1--5.
[15]
Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. 2021. Pct: Point cloud transformer. Computational Visual Media 7 (2021), 187--199.
[16]
Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. 2020. Deep learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine intelligence 43, 12 (2020), 4338--4364.
[17]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR. 770--778.
[18]
Alireza Javaheri, Catarina Brites, Fernando Pereira, and Joao Ascenso. 2020. Point cloud rendering after coding: Impacts on subjective and objective quality. IEEE Transactions on Multimedia 23 (2020), 4049--4064.
[19]
Davi Lazzarotto, Michela Testolina, and Touradj Ebrahimi. 2024. Subjective performance evaluation of bitrate allocation strategies for MPEG and JPEG Pleno point cloud compression. arXiv preprint arXiv:2402.04760 (2024).
[20]
Qi Liu, Yiyun Liu, Honglei Su, Hui Yuan, and Raouf Hamzaoui. 2022. Progressive Knowledge Transfer Based on Human Visual Perception Mechanism for Perceptual Quality Assessment of Point Clouds. arXiv preprint arXiv:2211.16646 (2022).
[21]
Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu, and Zhou Wang. 2022. Perceptual Quality Assessment of Colored 3D Point Clouds. IEEE Transactions on Visualization and Computer Graphics (2022), 1--1. https://doi.org/10.1109/TVCG. 2022.3167151
[22]
Qi Liu, Hui Yuan, Raouf Hamzaoui, Honglei Su, Junhui Hou, and Huan Yang. 2021. Reduced reference perceptual quality model with application to rate control for video-based point cloud compression. IEEE Transactions on Image Processing 30 (2021), 6623--6636.
[23]
Qi Liu, Hui Yuan, Honglei Su, Hao Liu, Yu Wang, Huan Yang, and Junhui Hou. 2021. PQA-Net: Deep no reference point cloud quality assessment via multi-view projection. IEEE transactions on circuits and systems for video technology 31, 12 (2021), 4645--4660.
[24]
Yating Liu, Ziyu Shan, Yujie Zhang, and Yiling Xu. 2024. MFT-PCQA: Multi-Modal Fusion Transformer for No-Reference Point Cloud Quality Assessment. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 7965--7969. https://doi.org/10.1109/ICASSP48485.2024.10445736
[25]
Yipeng Liu, Qi Yang, Yiling Xu, and Le Yang. 2023. Point cloud quality assessment: Dataset construction and learning-based no-reference metric. ACM Transactions on Multimedia Computing, Communications and Applications 19, 2s (2023), 1--26.
[26]
Zhi Liu, Qiyue Li, Xianfu Chen, Celimuge Wu, Susumu Ishihara, Jie Li, and Yusheng Ji. 2021. Point cloud video streaming: Challenges and solutions. IEEE Network 35, 5 (2021), 202--209.
[27]
Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. ArXiv:1711.05101v3 (2017). https://doi.org/10.48550/arXiv.1711.05101
[28]
Jiaqi Ma, Shengyuan Yan, Lefei Zhang, Guoli Wang, and Qian Zhang. 2022. ELMformer: Efficient Raw Image Restoration with a Locally Multiplicative Transformer. In ACM MM. 5842--5852.
[29]
Rufael Mekuria, Kees Blom, and Pablo Cesar. 2016. Design, implementation, and evaluation of a point cloud codec for tele-immersive video. IEEE Transactions on Circuits and Systems for Video Technology 27, 4 (2016), 828--842.
[30]
Gabriel Meynet, Yana Nehmé, Julie Digne, and Guillaume Lavoué. 2020. PCQM: A full-reference quality metric for colored 3D point clouds. In QoMEX. 1--6.
[31]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS. Curran Associates, Inc., 8024-- 8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-highperformance-deep-learning-library.pdf
[32]
Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet: Deep hierarchical feature learning on point sets in a metric space. In NeurIPS, Vol. 30.
[33]
Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A. Chou, Robert A. Cohen, Maja Krivokua, Sébastien Lasserre, Zhu Li, Joan Llach, Khaled Mammou, Rufael Mekuria, Ohji Nakagami, Ernestasia Siahaan, Ali Tabatabai, Alexis M. Tourapis, and Vladyslav Zakharchenko. 2019. Emerging MPEG Standards for Point Cloud Compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 1 (2019), 133--148. https://doi.org/10.1109/JETCAS.2018.2885981
[34]
Ziyu Shan, Qi Yang, Rui Ye, Yujie Zhang, Yiling Xu, Xiaozhong Xu, and Shan Liu. 2023. GPA-Net: No-Reference Point Cloud Quality Assessment with Multi-task Graph Convolutional Network. IEEE Transactions on Visualization and Computer Graphics (2023).
[35]
Ziyu Shan, Yujie Zhang, Qi Yang, Haichen Yang, Yiling Xu, Jenq-Neng Hwang, Xiaozhong Xu, and Shan Liu. 2024. Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment. arXiv preprint arXiv:2403.10066 (2024).
[36]
Ivan Sipiran, Alexis Mendoza, Alexander Apaza, and Cristian Lopez. 2022. Data-driven restoration of digital archaeological pottery with point cloud analysis. International Journal of Computer Vision 130, 9 (2022), 2149--2165.
[37]
Honglei Su, Qi Liu, Yuxin Liu, Hui Yuan, Huan Yang, Zhenkuan Pan, and Zhou Wang. 2023. Bitstream-Based Perceptual Quality Assessment of Compressed 3D Point Clouds. IEEE Transactions on Image Processing 32 (2023), 1815--1828.
[38]
Shishir Subramanyam, Irene Viola, Jack Jansen, Evangelos Alexiou, Alan Hanjalic, and Pablo Cesar. 2022. Subjective QoE Evaluation of User-Centered Adaptive Streaming of Dynamic Point Clouds. In QoMEX. IEEE, 1--6.
[39]
Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. 2017. Geometric distortion metrics for point cloud compression. In IEEE ICIP. 3460--3464.
[40]
D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro. 2017. Updates and Integration of Evaluation Metric Software for PCC. ISO/IEC JTC1/SC29/WG11 Doc. MPEG2017/M40522.
[41]
Jeroen Van Der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and Hermann Hellwagner. 2019. Towards 6dof http adaptive streaming through point cloud compression. In ACM MM. 2405--2413.
[42]
Irene Viola and Pablo Cesar. 2020. A reduced reference metric for visual quality evaluation of point cloud contents. IEEE Signal Processing Letters 27 (2020), 1660--1664.
[43]
Irene Viola, Shishir Subramanyam, and Pablo Cesar. 2020. A Color-Based Objective Quality Metric for Point Cloud Contents. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). 1--6. https: //doi.org/10.1109/QoMEX48832.2020.9123089
[44]
SongtaoWang, XiaoqiWang, Hao Gao, and Jian Xiong. 2023. Non-Local Geometry and Color Gradient Aggregation Graph Model for No-Reference Point Cloud Quality Assessment. In ACM MM. 6803--6810.
[45]
Xiaoqi Wang, Jian Xiong, Hao Gao, and Weisi Lin. 2023. Regression-free Blind Image Quality Assessment. arXiv preprint arXiv:2307.09279 (2023).
[46]
Xinju Wu, Yun Zhang, Chunling Fan, Junhui Hou, and Sam Kwong. 2021. Subjective Quality Database and Objective Study of Compressed Point Clouds With 6DoF Head-Mounted Display. IEEE Transactions on Circuits and Systems for Video Technology 31, 12 (2021), 4630--4644. https://doi.org/10.1109/TCSVT.2021.3101484
[47]
Wuyuan Xie, Kaimin Wang, Yakun Ju, and Miaohui Wang. 2023. pmBQA: Projection-based Blind Point Cloud Quality Assessment via Multimodal Learning. In ACM MM. 3250--3258.
[48]
Pengwan Yang, Cees GM Snoek, and Yuki M Asano. 2023. Self-Ordering Point Clouds. In ICCV. 15813--15822.
[49]
Qi Yang, Hao Chen, Zhan Ma, Yiling Xu, Rongjun Tang, and Jun Sun. 2020. Predicting the perceptual quality of point cloud: A 3D-to-2D projection-based exploration. IEEE Transactions on Multimedia (2020).
[50]
Qi Yang, Yipeng Liu, Siheng Chen, Yiling Xu, and Jun Sun. 2022. No-reference point cloud quality assessment via domain adaptation. In CVPR. 21179--21188.
[51]
Qi Yang, Zhan Ma, Yiling Xu, Zhu Li, and Jun Sun. 2020. Inferring point cloud quality via graph similarity. IEEE transactions on pattern analysis and machine intelligence (2020).
[52]
Qi Yang, Yujie Zhang, Siheng Chen, Yiling Xu, Jun Sun, and Zhan Ma. 2022. MPED: Quantifying point cloud distortion based on multiscale potential energy discrepancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 5 (2022), 6037--6054.
[53]
Bo Zhang, Jiakang Yuan, Baopu Li, Tao Chen, Jiayuan Fan, and Botian Shi. 2022. Learning cross-image object semantic relation in transformer for few-shot fine-grained image classification. In ACM MM. 2135--2144.
[54]
Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu. 2022. Patchformer: An efficient point transformer with patch attention. In CVPR. 11799--11808.
[55]
Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu, and Guangtao Zhai. 2022. No-reference quality assessment for 3d colored point cloud and mesh models. IEEE Transactions on Circuits and Systems for Video Technology 32, 11 (2022), 7618--7631.
[56]
Zicheng Zhang, Wei Sun, Xiongkuo Min, Quan Zhou, Jun He, Qiyuan Wang, and Guangtao Zhai. 2023. MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality Assessment. In IJCAI.
[57]
Zicheng Zhang, Wei Sun, Houning Wu, Yingjie Zhou, Chunyi Li, Xiongkuo Min, Guangtao Zhai, and Weisi Lin. 2023. GMS-3DQA: Projection-based Grid Minipatch Sampling for 3D Model Quality Assessment. arXiv preprint arXiv:2306.05658 (2023).
[58]
Wei Zhou, Qi Yang, Qiuping Jiang, Guangtao Zhai, and Weisi Lin. 2022. Blind quality assessment of 3D dense point clouds with structure guided resampling. arXiv preprint arXiv:2208.14603 (2022).
[59]
Wei Zhou, Guanghui Yue, Ruizeng Zhang, Yipeng Qin, and Hantao Liu. 2023. Reduced-Reference Quality Assessment of Point Clouds via Content-Oriented Saliency Projection. IEEE Signal Processing Letters 30 (2023), 354--358. https://doi.org/10.1109/LSP.2023.3264105

Index Terms

  1. Deciphering Perceptual Quality in Colored Point Cloud: Prioritizing Geometry or Texture Distortion?

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MM '24: Proceedings of the 32nd ACM International Conference on Multimedia
    October 2024
    11719 pages
    ISBN:9798400706868
    DOI:10.1145/3664647
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 October 2024

    Check for updates

    Author Tags

    1. geometry and texture
    2. multi-modal
    3. multi-task
    4. objective quality assessment
    5. point cloud

    Qualifiers

    • Research-article

    Conference

    MM '24
    Sponsor:
    MM '24: The 32nd ACM International Conference on Multimedia
    October 28 - November 1, 2024
    Melbourne VIC, Australia

    Acceptance Rates

    MM '24 Paper Acceptance Rate 1,150 of 4,385 submissions, 26%;
    Overall Acceptance Rate 2,145 of 8,556 submissions, 25%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 235
      Total Downloads
    • Downloads (Last 12 months)235
    • Downloads (Last 6 weeks)124
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media