skip to main content
10.1145/3664647.3680686acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

MoS2: Mixture of Scale and Shift Experts for Text-Only Video Captioning

Published: 28 October 2024 Publication History

Abstract

Video captioning is a challenging task and typically requires paired video-text data for training. However, manually annotating coherent textual descriptions for videos is laborious and time-consuming. To address this challenge, we propose a novel approach that enhances video captioning using only synthetic text data. Leveraging the exceptional text generation capabilities of large language models (LLMs), we produce high-quality and diverse video captions tailored to the target domain. Our approach employs a two-stage prompting strategy: first prompt GPT-4 with few-shot target-domain captions to create a set of high-quality captions, and then continue prompting with the generated captions to acquire large-scale synthetic data. To effectively utilize these captions, we introduce Mixture of Scale and Shift experts (MoS2), an efficient adaptation method for pre-trained captioning models. MoS2 employs lightweight routing networks to estimate probability distributions over a collection of scale and shift experts, dynamically allocating tokens to the appropriate experts. This dynamic adjustment mechanism enhances the model's ability to handle data variations and mitigates the distribution shift between synthetic and real captions. Moreover, our method reduces the number of learnable parameters, facilitating more efficient adaptation. Our method achieves superior performance with only synthetic text data, narrowing the gap between zero-shot and fine-tuned models and reducing the dependency on paired data from the target domain.

References

[1]
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).
[2]
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. 2022. Flamingo: a visual language model for few-shot learning. Advances in Neural Information Processing Systems, Vol. 35 (2022), 23716--23736.
[3]
Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. 2023. Openflamingo: An open-source framework for training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390 (2023).
[4]
Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. 65--72.
[5]
David Chen and William B Dolan. 2011. Collecting highly parallel data for paraphrase evaluation. In Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. 190--200.
[6]
Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu. 2024. Vast: A vision-audio-subtitle-text omni-modality foundation model and dataset. Advances in Neural Information Processing Systems, Vol. 36 (2024).
[7]
Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. 2023. Pali-3 vision language models: Smaller, faster, stronger. arXiv preprint arXiv:2310.09199 (2023).
[8]
Marcella Cornia, Lorenzo Baraldi, Giuseppe Fiameni, and Rita Cucchiara. 2021. Universal Captioner: Inducing Content-Style Separation in Vision-and-Language Model Training. arXiv preprint arXiv:2111.12727 (2021).
[9]
Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. 2022. Eva: Exploring the limits of masked visual representation learning at scale. arXiv preprint arXiv:2211.07636 (2022).
[10]
Sophia Gu, Christopher Clark, and Aniruddha Kembhavi. 2022. I Can't Believe There's No Images! Learning Visual Tasks Using only Language Supervision. arXiv preprint arXiv:2211.09778 (2022).
[11]
Dan Guo, Kun Li, Bin Hu, Yan Zhang, and Meng Wang. 2024. Benchmarking Micro-action Recognition: Dataset, Method, and Application. IEEE Transactions on Circuits and Systems for Video Technology (2024).
[12]
Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao, Peng Gao, and Xiangyu Yue. 2023. Onellm: One framework to align all modalities with language. arXiv preprint arXiv:2312.03700 (2023).
[13]
Xingjian He, Sihan Chen, Fan Ma, Zhicheng Huang, Xiaojie Jin, Zikang Liu, Dongmei Fu, Yi Yang, Jing Liu, and Jiashi Feng. 2023. Vlab: Enhancing video language pre-training by feature adapting and blending. arXiv preprint arXiv:2305.13167 (2023).
[14]
Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. 2014. Learning to Solve Arithmetic Word Problems with Verb Categorization. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). Association for Computational Linguistics, Doha, Qatar, 523--533. https://doi.org/10.3115/v1/D14-1058
[15]
Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In International Conference on Machine Learning. PMLR, 2790--2799.
[16]
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).
[17]
Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models. arXiv preprint arXiv:2304.01933 (2023).
[18]
Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. 2021. Perceiver: General perception with iterative attention. In International conference on machine learning. PMLR, 4651--4664.
[19]
Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[20]
Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024).
[21]
Chia-Wen Kuo and Zsolt Kira. 2022. Beyond a pre-trained object detector: Cross-modal textual and visual context for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17969--17979.
[22]
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668 (2020).
[23]
Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).
[24]
Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023).
[25]
Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In International Conference on Machine Learning. PMLR, 12888--12900.
[26]
Wei Li, Linchao Zhu, Longyin Wen, and Yi Yang. 2023. DeCap: Decoding CLIP Latents for Zero-Shot Captioning via Text-Only Training. arXiv preprint arXiv:2303.03032 (2023).
[27]
Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021).
[28]
Yaowei Li, Ruijie Quan, Linchao Zhu, and Yi Yang. 2023. Efficient multimodal fusion via interactive prompting. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2604--2613.
[29]
Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. 2022. Scaling & shifting your features: A new baseline for efficient model tuning. Advances in Neural Information Processing Systems, Vol. 35 (2022), 109--123.
[30]
Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). 605--612.
[31]
Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, and Lijuan Wang. 2022. Swinbert: End-to-end transformers with sparse attention for video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17949--17958.
[32]
Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruction tuning. Advances in neural information processing systems, Vol. 36 (2024).
[33]
Jiang Lu, Lei Li, and Changshui Zhang. 2021. Self-reinforcing unsupervised matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, 8 (2021), 4404--4418.
[34]
Yu Lu, Ruijie Quan, Linchao Zhu, and Yi Yang. 2024. Zero-shot video grounding with pseudo query lookup and verification. IEEE Transactions on Image Processing, Vol. 33 (2024), 1643--1654.
[35]
Fan Ma, Xiaojie Jin, Heng Wang, Jingjia Huang, Linchao Zhu, and Yi Yang. 2024. Stitching Segments and Sentences towards Generalization in Video-Text Pre-training. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 4080--4088.
[36]
David Nukrai, Ron Mokady, and Amir Globerson. 2022. Text-Only Training for Image Captioning using Noise-Injected CLIP. arXiv preprint arXiv:2211.00575 (2022).
[37]
Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. 2022. ST-Adapter: Parameter-Efficient Image-to-Video Transfer Learning. Advances in Neural Information Processing Systems, Vol. 35 (2022), 26462--26477.
[38]
Pinelopi Papalampidi, Skanda Koppula, Shreya Pathak, Justin Chiu, Joe Heyward, Viorica Patraucean, Jiajun Shen, Antoine Miech, Andrew Zisserman, and Aida Nematzdeh. 2023. A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames. arXiv preprint arXiv:2312.07395 (2023).
[39]
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 311--318.
[40]
Longtian Qiu, Shan Ning, and Xuming He. 2024. Mining Fine-Grained Image-Text Alignment for Zero-Shot Captioning via Text-Only Training. arXiv preprint arXiv:2401.02347 (2024).
[41]
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning. PMLR, 8748--8763.
[42]
Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative pre-training. (2018).
[43]
Subhro Roy and Dan Roth. 2015. Solving General Arithmetic Word Problems. In Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP). http://cogcomp.org/papers/arithmetic.pdf
[44]
Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab, and Cordelia Schmid. 2022. End-to-end generative pretraining for multimodal video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17959--17968.
[45]
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
[46]
Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lingpeng Kong, and Nigel Collier. 2022. Language models can see: plugging visual controls in text generation. arXiv preprint arXiv:2205.02655 (2022).
[47]
Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. Lst: Ladder side-tuning for parameter and memory efficient transfer learning. arXiv preprint arXiv:2206.06522 (2022).
[48]
Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. Vl-adapter: Parameter-efficient transfer learning for vision-and-language tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 5227--5237.
[49]
Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf. 2022. Zerocap: Zero-shot image-to-text generation for visual-semantic arithmetic. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17918--17928.
[50]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).
[51]
Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4566--4575.
[52]
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018).
[53]
Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang. 2022. Git: A generative image-to-text transformer for vision and language. arXiv preprint arXiv:2205.14100 (2022).
[54]
Junyang Wang, Yi Zhang, Ming Yan, Ji Zhang, and Jitao Sang. 2022. Zero-shot Image Captioning by Anchor-augmented Vision-Language Space Alignment. arXiv preprint arXiv:2211.07275 (2022).
[55]
Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. 2019. Vatex: A large-scale, high-quality multilingual dataset for video-and-language research. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4581--4591.
[56]
Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan Xu, Zun Wang, et al. 2024. InternVideo2: Scaling Video Foundation Models for Multimodal Video Understanding. arXiv preprint arXiv:2403.15377 (2024).
[57]
Junfei Xiao, Zheng Xu, Alan Yuille, Shen Yan, and Boyu Wang. 2024. PaLM2-VAdapter: Progressively Aligned Language Model Makes a Strong Vision-language Adapter. arXiv preprint arXiv:2402.10896 (2024).
[58]
Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi, Qi Qian, Wei Wang, et al. 2023. mplug-2: A modularized multi-modal foundation model across text, image and video. In International Conference on Machine Learning. PMLR, 38728--38748.
[59]
Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description dataset for bridging video and language. In Proceedings of the IEEE conference on computer vision and pattern recognition. 5288--5296.
[60]
Yunqiu Xu, Linchao Zhu, and Yi Yang. 2024. GG-Editor: Locally Editing 3D Avatars with Multimodal Large Language Model Guidance. In Proceedings of the 32nd ACM International Conference on Multimedia.
[61]
Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui Yu. 2022. Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners. arXiv preprint arXiv:2212.04979 (2022).
[62]
Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic, and Cordelia Schmid. 2023. Vid2Seq: Large-scale pretraining of a visual language model for dense video captioning. arXiv preprint arXiv:2302.14115 (2023).
[63]
Bang Yang, Fenglin Liu, Xian Wu, Yaowei Wang, Xu Sun, and Yuexian Zou. 2023. Multicapclip: Auto-encoding prompts for zero-shot multilingual visual captioning. arXiv preprint arXiv:2308.13218 (2023).
[64]
Xiangpeng Yang, Linchao Zhu, Xiaohan Wang, and Yi Yang. 2024. DGL: Dynamic Global-Local Prompt Tuning for Text-Video Retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 6540--6548.
[65]
Qinghao Ye, Guohai Xu, Ming Yan, Haiyang Xu, Qi Qian, Ji Zhang, and Fei Huang. 2022. HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training. arXiv preprint arXiv:2212.14546 (2022).
[66]
Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022. Coca: Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022).
[67]
Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199 (2021).
[68]
Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof Choromanski, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, et al. 2022. Socratic models: Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598 (2022).
[69]
Zequn Zeng, Yan Xie, Hao Zhang, Chiyu Chen, Zhengjue Wang, and Bo Chen. 2024. MeaCap: Memory-Augmented Zero-shot Image Captioning. arXiv preprint arXiv:2403.03715 (2024).
[70]
Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao. 2023. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. arXiv preprint arXiv:2303.16199 (2023).
[71]
Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022).
[72]
Yue Zhao, Long Zhao, Xingyi Zhou, Jialin Wu, Chun-Te Chu, Hui Miao, Florian Schroff, Hartwig Adam, Ting Liu, Boqing Gong, et al. 2024. Distilling vision-language models on millions of videos. arXiv preprint arXiv:2401.06129 (2024).
[73]
Zijia Zhao, Longteng Guo, Tongtian Yue, Sihan Chen, Shuai Shao, Xinxin Zhu, Zehuan Yuan, and Jing Liu. 2023. Chatbridge: Bridging modalities with large language model as a language catalyst. arXiv preprint arXiv:2305.16103 (2023).
[74]
Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models. arXiv preprint arXiv:2304.10592 (2023).
[75]
Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Hongsheng Li, Xiaohua Wang, and Jifeng Dai. 2022. Uni-perceiver: Pre-training unified architecture for generic perception for zero-shot and few-shot tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16804--16815.

Cited By

View all
  • (2024)GG-Editor: Locally Editing 3D Avatars with Multimodal Large Language Model GuidanceProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681039(10910-10919)Online publication date: 28-Oct-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MM '24: Proceedings of the 32nd ACM International Conference on Multimedia
October 2024
11719 pages
ISBN:9798400706868
DOI:10.1145/3664647
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 October 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. large language models
  2. mixture of experts
  3. video captioning

Qualifiers

  • Research-article

Conference

MM '24
Sponsor:
MM '24: The 32nd ACM International Conference on Multimedia
October 28 - November 1, 2024
Melbourne VIC, Australia

Acceptance Rates

MM '24 Paper Acceptance Rate 1,150 of 4,385 submissions, 26%;
Overall Acceptance Rate 2,145 of 8,556 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)151
  • Downloads (Last 6 weeks)67
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)GG-Editor: Locally Editing 3D Avatars with Multimodal Large Language Model GuidanceProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681039(10910-10919)Online publication date: 28-Oct-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media