skip to main content
10.1145/3666025.3699367acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

StarAngle: User Orientation Sensing with Beacon Phase Measurements of Multiple Starlink Satellites

Published: 04 November 2024 Publication History

Abstract

Low Earth Orbit (LEO) satellite networks have been growing very rapidly in recent years. In this paper, we propose a novel method, called StarAngle, which estimates user orientation with the beacon signals of Starlink satellites. StarAngle measures the beacon phase difference between two receiving antennas because the phase difference is a function of the user orientation. The phase measurements are compared with mathematical calculations based on known orbital parameters of Starlink satellites and the value that leads to the best agreement is used as the estimation. We overcome challenges due to asynchronous clocks in our commodity antennas by subtracting the phase measurements of one satellite by another which cancels the biases caused by clock mismatch. We experimentally test StarAngle in 10 locations under challenging weather conditions and our results show that the median estimation error is 7.5 degrees. Our results also confirm that the phase information of Starlink satellites can be measured reliably and may be used to support other applications in addition to user orientation estimation.

References

[1]
2024. https://satellitemap.space/.
[2]
Mohamed Amine Arfaoui, Mohammad Dehghani Soltani, Iman Tavakkolnia, Ali Ghrayeb, Chadi M. Assi, Majid Safari, and Harald Haas. 2021. Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation. IEEE Journal on Selected Areas in Communications 39, 9 (2021), 2890--2905.
[3]
P. Bahl and V.N. Padmanabhan. 2000. RADAR: an in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), Vol. 2. 775--784 vol.2.
[4]
Noori BniLam, Dennis Joosens, Michiel Aernouts, Jan Steckel, and Maarten Weyn. 2021. LoRay: AoA Estimation System for Long Range Communication Networks. IEEE Transactions on Wireless Communications 20, 3 (2021), 2005--2018.
[5]
celestrak. 2024. https://celestrak.org/NORAD/elements/supplemental/sup-gp.php?FILE=starlink&FORMAT=tle.
[6]
Junyoung Choi, Gyujin Lee, Sunghyun Choi, and Saewoong Bahk. 2022. Smart-phone Based Indoor Path Estimation and Localization Without Human Intervention. IEEE Transactions on Mobile Computing 21, 2 (2022), 681--695.
[7]
Ahmed Elzanaty, Anna Guerra, Francesco Guidi, and Mohamed-Slim Alouini. 2021. Reconfigurable Intelligent Surfaces for Localization: Position and Orientation Error Bounds. IEEE Transactions on Signal Processing 69 (2021), 5386--5402.
[8]
B.H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Ingeman Pedersen. 1999. Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE Journal on Selected Areas in Communications 17, 3 (1999), 434--450.
[9]
Zhihui Gao, Yunfan Gao, Sulei Wang, Dan Li, and Yuedong Xu. 2021. CRISLoc: Reconstructable CSI Fingerprinting for Indoor Smartphone Localization. IEEE Internet of Things Journal 8, 5 (2021), 3422--3437.
[10]
Mark Harris. 2022. Starlink signals can be reverse-engineered to work like GPS---whether SpaceX likes it or not. MIT Technology Review (October 2022).
[11]
Cory Hekimian-Williams, Brandon Grant, Xiuwen Liu, Zhenghao Zhang, and Piyush Kumar. 2010. Accurate localization of RFID tags using phase difference. In 2010 IEEE International Conference on RFID (IEEE RFID 2010). 89--96.
[12]
K.C. Ho and Y.T. Chan. 1993. Solution and performance analysis of geolocation by TDOA. IEEE Trans. Aerospace Electron. Systems 29, 4 (1993), 1311--1322.
[13]
Dave Hollander. March 27, 2019. How AoA & AoD Changed the Direction of Bluetooth Location Services. https://www.bluetooth.com/blog/new-aoa-aod-bluetooth-capabilities/.
[14]
Todd E. Humphreys, Peter A. Iannucci, Zacharias M. Komodromos, and Andrew M. Graff. 2023. Signal Structure of the Starlink Ku-Band Downlink. IEEE Trans. Aerospace Electron. Systems 59, 5 (2023), 6016--6030.
[15]
Toshiaki Koike-Akino, Pu Wang, Milutin Pajovic, Haijian Sun, and Philip V. Orlik. 2020. Fingerprinting-Based Indoor Localization With Commercial MMWave WiFi: A Deep Learning Approach. IEEE Access 8 (2020), 84879--84892.
[16]
Manikanta Kotaru, Kiran Raj Joshi, Dinesh Bharadia, and Sachin Katti. 2015. SpotFi: Decimeter Level Localization Using WiFi. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015, London, United Kingdom, August 17--21, 2015, Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 269--282.
[17]
Sharbel Kozhaya, Haitham Kanj, and Zaher M. Kassas. 2023. Multi-Constellation Blind Beacon Estimation, Doppler Tracking, and Opportunistic Positioning with OneWeb, Starlink, Iridium NEXT, and Orbcomm LEO Satellites. In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). 1184--1195.
[18]
Sharbel E. Kozhaya and Zaher M. Kassas. 2023. Positioning with Starlink LEO Satellites: A Blind Doppler Spectral Approach. In 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). 1--5.
[19]
Yuanjie Li, Hewu Li, Wei Liu, Lixin Liu, Wei Zhao, Yimei Chen, Jianping Wu, Qian Wu, Jun Liu, Zeqi Lai, and Han Qiu. 2023. A Networking Perspective on Starlink's Self-Driving LEO Mega-Constellation. Association for Computing Machinery, New York, NY, USA.
[20]
Zhi Lin, Kang An, Hehao Niu, Yihua Hu, Symeon Chatzinotas, Gan Zheng, and Jiangzhou Wang. 2023. SLNR-Based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerospace Electron. Systems 59, 2 (2023), 2085--2088.
[21]
Zhi Lin, Min Lin, Benoit Champagne, Wei-Ping Zhu, and Naofal Al-Dhahir. 2021. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Transactions on Communications 69, 9 (2021), 6345--6360.
[22]
Andrew Liszewski. 2022. The University of Texas Hacked Starlink's Signal So It Can Be Used as a GPS Alternative. Gizmodo (October 2022).
[23]
Jun Liu, Jiayao Gao, Sanjay K. Jha, and Wen Hu. 2021. Seirios: leveraging multiple channels for LoRaWAN indoor and outdoor localization. In ACM MobiCom '21: The 27th Annual International Conference on Mobile Computing and Networking, New Orleans, Louisiana, USA, October 25--29, 2021. ACM, 656--669.
[24]
Adi Manos, Tamir Hazan, and Itzik Klein. 2022. Walking Direction Estimation Using Smartphone Sensors: A Deep Network-Based Framework. IEEE Transactions on Instrumentation and Measurement 71 (2022), 1--12.
[25]
Mohammad Neinavaie and Zaher M. Kassas. 2023. Signal Mode Transition Detection in Starlink LEO Satellite Downlink Signals. In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). 360--364.
[26]
Ousmane Abdoulaye Oumar, Ming Fei Siyau, and Tariq P. Sattar. 2012. Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems. In The First International Conference on Future Generation Communication Technologies. 99--103.
[27]
Ales Povalac and Jiri Sebesta. 2011. Phase difference of arrival distance estimation for RFID tags in frequency domain. In 2011 IEEE International Conference on RFID-Technologies and Applications. 188--193.
[28]
Tereza Pultarova and Elizabeth Howell. May 30, 2024. Starlink satellites: Facts, tracking and impact on astronomy. https://www.space.com/spacex-starlink-satellites.html (May 30, 2024).
[29]
Xinping Rao, Zhenzhen Luo, Yong Luo, Yugen Yi, Gang Lei, and Yuanlong Cao. 2024. MFFALoc: CSI-Based Multifeatures Fusion Adaptive Device-Free Passive Indoor Fingerprinting Localization. IEEE Internet of Things Journal 11, 8 (2024), 14100--14114.
[30]
R. Roy and T. Kailath. 1989. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 7 (1989), 984--995.
[31]
R. Schmidt. 1986. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34, 3 (1986), 276--280.
[32]
Fernando Seco, Antonio R. Jiménez, and Francisco Zampella. 2013. Joint estimation of indoor position and orientation from RF signal strength measurements. In International Conference on Indoor Positioning and Indoor Navigation. 1--8.
[33]
Shengqiang Shen, Shiyin Li, and Heidi Steendam. 2022. Hybrid Position and Orientation Estimation for Visible Light Systems in the Presence of Prior Information on the Orientation. IEEE Transactions on Wireless Communications 21, 8 (2022), 6271--6284.
[34]
Xiufang Shi, Brian. D. O. Anderson, Guoqiang Mao, Zaiyue Yang, Jiming Chen, and Zihuai Lin. 2016. Robust Localization Using Time Difference of Arrivals. IEEE Signal Processing Letters 23, 10 (2016), 1320--1324.
[35]
Yimiao Sun, Yuan He, Jiacheng Zhang, Xin Na, Yande Chen, Weiguo Wang, and Xiuzhen Guo. 2023. BIFROST: Reinventing WiFi Signals Based on Dispersion Effect for Accurate Indoor Localization. In Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems, SenSys 2023, Istanbul, Turkiye, November 12--17, 2023, M. Rasit Eskicioglu, Polly Huang, and Neal Patwari (Eds.). ACM, 376--389.
[36]
Xinyu Tong, Han Wang, Xiulong Liu, and Wenyu Qu. 2023. MapFi: Autonomous Mapping of Wi-Fi Infrastructure for Indoor Localization. IEEE Transactions on Mobile Computing 22, 3 (2023), 1566--1580.
[37]
Xuyu Wang, Lingjun Gao, Shiwen Mao, and Santosh Pandey. 2017. CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Transactions on Vehicular Technology 66, 1 (2017), 763--776.
[38]
Yue Wang and K. C. Ho. 2017. TDOA Positioning Irrespective of Source Range. IEEE Transactions on Signal Processing 65, 6 (2017), 1447--1460.
[39]
Kainam Thomas Wong and M.D. Zoltowski. 2000. Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Transactions on Antennas and Propagation 48, 8 (2000), 1235--1245.
[40]
Kaishun Wu, Jiang Xiao, Youwen Yi, Dihu Chen, Xiaonan Luo, and Lionel M. Ni. 2013. CSI-Based Indoor Localization. IEEE Transactions on Parallel and Distributed Systems 24, 7 (2013), 1300--1309.
[41]
Chun Yang and Andrey Soloviev. 2023. Starlink Doppler and Doppler Rate Estimation via Coherent Combining of Multiple Tones for Opportunistic Positioning. In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). 1143--1153.
[42]
Kang Yang, Yuning Chen, and Wan Du. 2024. OrchLoc: In-Orchard Localization via a Single LoRa Gateway and Generative Diffusion Model-based Fingerprinting. In Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services, MOBISYS 2024, Minato-ku, Tokyo, Japan, June 3--7, 2024, Tadashi Okoshi, JeongGil Ko, and Robert LiKamWa (Eds.). ACM, 304--317.
[43]
Kehu Yang, Gang Wang, and Zhi-Quan Luo. 2009. Efficient Convex Relaxation Methods for Robust Target Localization by a Sensor Network Using Time Differences of Arrivals. IEEE Transactions on Signal Processing 57, 7 (2009), 2775--2784.
[44]
Xiheng Chen Yanhan Zeng, Yuxing Liao and Hong zhou Tan. 2023. UHF RFID Indoor Localization Based on Phase Difference. IETE Journal of Research 69, 6 (2023), 3511--3517.
[45]
Nathanael Yoder. Retrieved April 23, 2024. peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate). MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate (Retrieved April 23, 2024).
[46]
Li You, Xiaoyu Qiang, Ke-Xin Li, Christos G. Tsinos, Wenjin Wang, Xiqi Gao, and Björn Ottersten. 2022. Massive MIMO Hybrid Precoding for LEO Satellite Communications With Twin-Resolution Phase Shifters and Nonlinear Power Amplifiers. IEEE Transactions on Communications 70, 8 (2022), 5543--5557.
[47]
Dian Zhang, Jian Ma, Quanbin Chen, and Lionel M. Ni. 2007. An RF-Based System for Tracking Transceiver-Free Objects. In Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07). 135--144.
[48]
Dian Zhang and Lionel M. Ni. 2009. Dynamic clustering for tracking multiple transceiver-free objects. In 2009 IEEE International Conference on Pervasive Computing and Communications. 1--8.
[49]
Tianyu Zhang, Dongheng Zhang, Guanzhong Wang, Yadong Li, Yang Hu, Qibin Sun, and Yan Chen. 2023. RLoc: Towards Robust Indoor Localization by Quantifying Uncertainty. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 4 (2023), 200:1--200:28.
[50]
Minghui Zhao, Tyler Chang, Aditya Arun, Roshan Sai Ayyalasomayajula, Chi Zhang, and Dinesh Bharadia. 2021. ULoc: Low-Power, Scalable and cm-Accurate UWB-Tag Localization and Tracking for Indoor Applications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 3 (2021), 140:1--140:31.

Index Terms

  1. StarAngle: User Orientation Sensing with Beacon Phase Measurements of Multiple Starlink Satellites

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SenSys '24: Proceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems
    November 2024
    950 pages
    ISBN:9798400706974
    DOI:10.1145/3666025
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 November 2024

    Check for updates

    Badges

    Author Tags

    1. user orientation estimation
    2. LEO satellite
    3. phase difference

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    Acceptance Rates

    Overall Acceptance Rate 198 of 990 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 212
      Total Downloads
    • Downloads (Last 12 months)212
    • Downloads (Last 6 weeks)25
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media