skip to main content
10.1145/3666025.3699400acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
poster

Poster: Towards Low-Power Comprehensive Biodiversity Monitoring

Published: 04 November 2024 Publication History

Abstract

The Kunming-Montreal Global Biodiversity Framework sets ambitious targets for 2023, including halting human-induced species extinction. Achieving these requires comprehensive data on global biodiversity patterns, which can only be gathered through in-situ distributed sensor networks. However, these multi-device networks are constrained by battery lifetimes, must gather rich data from power-hungry sensors, and yet need to be deployed in remote environments for long periods. This note introduces a prototype multi-sensor device, and outlines how embedded scheduling could be used for extending sensor lifetime and resource-efficiency.

References

[1]
Rachel T. Buxton, Patrick E. Lendrum, Kevin R. Crooks, and George Wittemyer. 2018. Pairing camera traps and acoustic recorders to monitor the ecological impact of human disturbance. Global Ecology and Conservation 16 (2018), e00493.
[2]
Vincent Droissart, Laura Azandi, Eric Rostand Onguene, Marie Savignac, Thomas B. Smith, and Vincent Deblauwe. 2021. PICT: A low-cost, modular, open-source camera trap system to study plant-insect interactions. Methods in Ecology and Evolution 12, 8 (2021), 1389--1396. arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13618
[3]
Alaa Hafez, Amgad Saaed, Mohamed Emam, Mohamed Hassan, and Mohamed Shalaby. 2023. An Optimized Radar Sensors Schedule Using Genetic Algorithms. In 2023 International Telecommunications Conference (ITC-Egypt). 79--82.
[4]
Becky E Heath, Neel P Le Penru, James Skinner, C. David L. Orme, Sarab S Sethi, Robert M Ewers, and Lorenzo Picinali. 2024. MAARU: Multichannel Acoustic Autonomous Recording Unit for spatial ecosystem monitoring. bioRxiv (2024). arXiv:https://www.biorxiv.org/content/early/2024/01/26/2024.01.23.576628.full.pdf
[5]
Andrew P. Hill, Peter Prince, Evelyn Piña Covarrubias, C. Patrick Doncaster, Jake L. Snaddon, and Alex Rogers. 2018. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9, 5 (2018), 1199--1211. arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12955
[6]
Seunghyeok Jeon, Yonghun Choi, Yeonwoo Cho, and Hojung Cha. 2023. HarvNet: Resource-Optimized Operation of Multi-Exit Deep Neural Networks on Energy Harvesting Devices. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services (Helsinki, Finland) (MobiSys '23). Association for Computing Machinery, New York, NY, USA, 42--55.
[7]
Bo Jiang, Binoy Ravindran, and Hyeonjoong Cho. 2013. Probability-Based Prediction and Sleep Scheduling for Energy-Efficient Target Tracking in Sensor Networks. IEEE Transactions on Mobile Computing 12, 4 (2013), 735--747.
[8]
Stefan Kahl, Connor M. Wood, Maximilian Eibl, and Holger Klinck. 2021. BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics 61 (2021), 101236.
[9]
Lauretta Andrew Laneng, Futoshi Nakamura, Yasuyuki Tachiki, and Charles S. Vairappan. 2021. Camera-trapping assessment of terrestrial mammals and birds in rehabilitated forest in INIKEA Project Area, Sabah, Malaysian Borneo. Landscape and Ecological Engineering 17, 2 (2021), 135--146.
[10]
James Long and Oral Buyukozturk. 2020. Collaborative duty cycling strategies in Energy Harvesting Sensor Networks. https://dspace.mit.edu/handle/1721.1/126602
[11]
Di Tian and Nicolas D. Georganas. 2002. A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (Atlanta, Georgia, USA) (WSNA '02). Association for Computing Machinery, New York, NY, USA, 32--41.
[12]
Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8, 3 (01 May 1992), 279--292.
[13]
Connor M. Wood and Stefan Kahl. 2024. Guidelines for appropriate use of BirdNET scores and other detector outputs. Journal of Ornithology 165, 3 (2024), 777--782.
[14]
J. Wolfgang Wägele and Georg F. Tschan. 2024. Weather stations for biodiversity: a comprehensive approach to an automated and modular monitoring system. Advanced Books 1 (2024), Advanced Books. arXiv:https://doi.org/10.3897/ab.e119534
[15]
Dirk Zeuss, Lisa Bald, Jannis Gottwald, Marcel Becker, Hicham Bellafkir, Jörg Bendix, Phillip Bengel, Larissa T. Beumer, Roland Brandl, Martin Brändle, Stephan Dahlke, Nina Farwig, Bernd Freisleben, Nicolas Friess, Lea Heidrich, Sven Heuer, Jonas Höchst, Hajo Holzmann, Patrick Lampe, Martin Leberecht, Kim Lindner, Juan F. Masello, Jonas Mielke Möglich, Markus Mühling, Thomas Müller, Alexey Noskov, Lars Opgenoorth, Carina Peter, Petra Quillfeldt, Sascha Rösner, Raphaël Royauté, Christian Mestre-Runge, Dana Schabo, Daniel Schneider, Bernhard Seeger, Elliot Shayle, Ralf Steinmetz, Pavel Tafo, Markus Vogelbacher, Stephan Wöllauer, Sohaib Younis, Julian Zobel, and Thomas Nauss. 2024. Nature 4.0: A networked sensor system for integrated biodiversity monitoring. Global Change Biology 30, 1 (2024), e17056. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.17056 e17056 GCB-23-1269.R1.
[16]
Filip Záplata and Miroslav Kasal. 2014. Using the Goertzel algorithm as a filter. In 2014 24th International Conference Radioelektronika. 1--3.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SenSys '24: Proceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems
November 2024
950 pages
ISBN:9798400706974
DOI:10.1145/3666025
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 November 2024

Check for updates

Author Tags

  1. edge computing
  2. TinyML
  3. biodiversity
  4. low-power sensing

Qualifiers

  • Poster

Conference

Acceptance Rates

Overall Acceptance Rate 198 of 990 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 61
    Total Downloads
  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)7
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media