skip to main content
research-article

TriMLP: A Foundational MLP-Like Architecture for Sequential Recommendation

Published: 18 October 2024 Publication History

Abstract

In this work, we present TriMLP as a foundational MLP-like architecture for the sequential recommendation, simultaneously achieving computational efficiency and promising performance. First, we empirically study the incompatibility between existing purely MLP-based models and sequential recommendation, that the inherent fully-connective structure endows historical user–item interactions (referred as tokens) with unrestricted communications and overlooks the essential chronological order in sequences. Then, we propose the MLP-based Triangular Mixer to establish ordered contact among tokens and excavate the primary sequential modeling capability under the standard auto-regressive training fashion. It contains (1) a global mixing layer that drops the lower-triangle neurons in MLP to block the anti-chronological connections from future tokens and (2) a local mixing layer that further disables specific upper-triangle neurons to split the sequence as multiple independent sessions. The mixer serially alternates these two layers to support fine-grained preferences modeling, where the global one focuses on the long-range dependency in the whole sequence, and the local one calls for the short-term patterns in sessions. Experimental results on 12 datasets of different scales from 4 benchmarks elucidate that TriMLP consistently attains favorable accuracy/efficiency tradeoff over all validated datasets, where the average performance boost against several state-of-the-art baselines achieves up to 14.88%, and the maximum reduction of inference time reaches 23.73%. The intriguing properties render TriMLP a strong contender to the well-established RNN-, CNN-, and Transformer-based sequential recommenders. Code is available at https://github.com/jiangyiheng1/TriMLP.

References

[1]
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. arXiv:1607.06450. Retrieved from http://arxiv.org/abs/1607.06450
[2]
Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Jing Cai, Yancheng He, Cunxiang Yin, and Ji-Rong Wen. 2021a. Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21). Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.), ACM, 3737–3746. DOI:
[3]
Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Xu Chen, Jing Cai, Yancheng He, Xingji Luo, and Ji-Rong Wen. 2021b. A Novel Macro-Micro Fusion Network for User Representation Learning on Mobile Apps. In Proceedings of the Web Conference (WWW ’21). Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.), ACM/IW3C2, 3199–3209. DOI:
[4]
Jialei Chen, Yuanbo Xu, Pengyang Wang, and Yongjian Yang. 2023. Deep Generative Imputation Model for Missing Not At Random Data. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). ACM, New York, NY. DOI:
[5]
Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping Luo. 2022. CycleMLP: A MLP-Like Architecture for Dense Prediction. In Proceedings of the 10th International Conference on Learning Representations (ICLR ’22). Retrieved from https://openreview.net/forum?id=NMEceG4v69Y
[6]
Alexander Dallmann, Daniel Zoller, and Andreas Hotho. 2021. A Case Study on Sampling Strategies for Evaluating Neural Sequential Item Recommendation Models. In Proceedings of the 15th ACM Conference on Recommender Systems (RecSys ’21). Humberto Jesús Corona Pampín, Martha A. Larson, Martijn C. Willemsen, Joseph A. Konstan, Julian J. McAuley, Jean Garcia-Gathright, Bouke Huurnink, and Even Oldridge (Eds.), ACM, 505–514. DOI:
[7]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT ’19), Volume 1 (Long and Short Papers). Jill Burstein, Christy Doran, and Thamar Solorio (Eds.), Association for Computational Linguistics, 4171–4186. DOI:
[8]
Xiaohan Ding, Honghao Chen, Xiangyu Zhang, Jungong Han, and Guiguang Ding. 2022. RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’22). IEEE, 568–577.
[9]
Michael D. Ekstrand, Ben Carterette, and Fernando Diaz. 2024. Distributionally-Informed Recommender System Evaluation. ACM Transactions on Recommender Systems 2, 1 (2024), 6:1–6:27. DOI:
[10]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI ’17). Carles Sierra (Ed.), ijcai.org, 1725–1731. DOI:
[11]
Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, and Yunhe Wang. 2022. Hire-MLP: Vision MLP via Hierarchical Rearrangement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’22). IEEE, 816–826. DOI:
[12]
F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2016), 19:1–19:19. DOI:
[13]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV ’15). IEEE Computer Society, 1026–1034. DOI:
[14]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’16). IEEE Computer Society, 770–778. DOI:
[15]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.), ACM, 173–182. DOI:
[16]
Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-Based Recommendations with Recurrent Neural Networks. In Proceedings of the 4th International Conference on Learning Representations (ICLR ’16), Conference Track Proceedings. Yoshua Bengio and Yann LeCun (Eds.). Retrieved from http://arxiv.org/abs/1511.06939
[17]
Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. 2021. Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition. arXiv:2106.12368. Retrieved from https://arxiv.org/abs/2106.12368
[18]
Yiheng Jiang, Yongjian Yang, Yuanbo Xu, and En Wang. 2023. Spatial-Temporal Interval Aware Individual Future Trajectory Prediction. IEEE Transactions on Knowledge and Data Engineering (2023), 1–14. DOI:
[19]
Wang-Cheng Kang and Julian J. McAuley. 2018. Self-Attentive Sequential Recommendation. In Proceedings of the IEEE International Conference on Data Mining (ICDM ’18). IEEE Computer Society, 197–206. DOI:
[20]
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR ’15), Conference Track Proceedings. Yoshua Bengio and Yann LeCun (Eds.). Retrieved from http://arxiv.org/abs/1412.6980
[21]
Walid Krichene and Steffen Rendle. 2022. On Sampled Metrics for Item Recommendation. Communications of the ACM 65, 7 (2022), 75–83. DOI:
[22]
Chenliang Li, Xichuan Niu, Xiangyang Luo, Zhenzhong Chen, and Cong Quan. 2019. A Review-Driven Neural Model for Sequential Recommendation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI ’19). Sarit Kraus (Ed.). ijcai.org, 2866–2872. DOI:
[23]
Ming Li, Ali Vardasbi, Andrew Yates, and Maarten de Rijke. 2023a. Repetition and Exploration in Sequential Recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.). ACM, 2532–2541. DOI:
[24]
Muyang Li, Zijian Zhang, Xiangyu Zhao, Wanyu Wang, Minghao Zhao, Runze Wu, and Ruocheng Guo. 2023b. AutoMLP: Automated MLP for Sequential Recommendations. In Proceedings of the ACM Web Conference (WWW ’23). Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (Eds.), ACM, 1190–1198. DOI:
[25]
Muyang Li, Xiangyu Zhao, Chuan Lyu, Minghao Zhao, Runze Wu, and Ruocheng Guo. 2022. MLP4Rec: A Pure MLP Architecture for Sequential Recommendations. In Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI ’22). Luc De Raedt (Ed.). ijcai.org, 2138–2144. DOI:
[26]
Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. 2022. AS-MLP: An Axial Shifted MLP Architecture for Vision. In Proceedings of the 10th International Conference on Learning Representations (ICLR ’22). OpenReview.net. Retrieved from https://openreview.net/forum?id=fvLLcIYmXb
[27]
Chong Liu, Xiaoyang Liu, Rongqin Zheng, Lixin Zhang, Xiaobo Liang, Juntao Li, Lijun Wu, Min Zhang, and Leyu Lin. 2021b. C\({}^{2}\)-Rec: An Effective Consistency Constraint for Sequential Recommendation. arXiv:2112.06668. Retrieved from https://arxiv.org/abs/2112.06668
[28]
Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. 2021a. Pay Attention to MLPs. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems (NeurIPS ’21). Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.), 9204–9215. Retrieved from https://proceedings.neurips.cc/paper/2021/hash/4cc05b35c2f937c5bd9e7d41d3686fff-Abstract.html
[29]
Ruiyang Liu, Yinghui Li, Linmi Tao, Dun Liang, and Hai-Tao Zheng. 2022. Are We Ready for a New Paradigm Shift? A Survey on Visual Deep MLP. Patterns 3, 7 (2022), 100520. DOI:
[30]
Yong Liu, Susen Yang, Yonghui Xu, Chunyan Miao, Min Wu, and Juyong Zhang. 2023. Contextualized Graph Attention Network for Recommendation With Item Knowledge Graph. IEEE Transactions on Knowledge and Data Engineering 35, 1 (2023), 181–195. DOI:
[31]
Julian J. McAuley and Jure Leskovec. 2013. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys ’13). Qiang Yang, Irwin King, Qing Li, Pearl Pu, and George Karypis (Eds.), ACM, 165–172. DOI:
[32]
Luke Melas-Kyriazi. 2021. Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet. arXiv:2105.02723. Retrieved from https://arxiv.org/abs/2105.02723
[33]
Mingda Qian, Xiaoyan Gu, Lingyang Chu, Feifei Dai, Haihui Fan, and Bo Li. 2022. Flexible Order Aware Sequential Recommendation. In Proceedings of the International Conference on Multimedia Retrieval (ICMR ’22). Vincent Oria, Maria Luisa Sapino, Shin’ichi Satoh, Brigitte Kerhervé, Wen-Huang Cheng, Ichiro Ide, and Vivek K. Singh (Eds.), ACM, 109–117. DOI:
[34]
Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.), ACM, 1441–1450. DOI:
[35]
Chuanxin Tang, Yucheng Zhao, Guangting Wang, Chong Luo, Wenxuan Xie, and Wenjun Zeng. 2022b. Sparse MLP for Image Recognition: Is Self-Attention Really Necessary? In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI ’22), Proceedings of the 34th Conference on Innovative Applications of Artificial Intelligence (IAAI ’22), Proceedings of the 12th Symposium on Educational Advances in Artificial Intelligence (EAAI ’22). AAAI Press, 2344–2351. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/20133
[36]
Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM ’18). Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.), ACM, 565–573. DOI:
[37]
Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, and Yunhe Wang. 2022a. An Image Patch is a Wave: Phase-Aware Vision MLP. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR ’22). IEEE, 10925–10934. DOI:
[38]
Yuki Tatsunami and Masato Taki. 2021. RaftMLP: Do MLP-based Models Dream of Winning Over Computer Vision? arXiv:2108.04384. Retrieved from https://arxiv.org/abs/2108.04384
[39]
Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. 2021. MLP-Mixer: An All-MLP Architecture for Vision. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems (NeurIPS ’21). Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.), 24261–24272. Retrieved from https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
[40]
Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou. 2021. ResMLP: Feedforward Networks for Image Classification with Data-Efficient Training. arXiv:2105.03404. Retrieved from https://arxiv.org/abs/2105.03404
[41]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017. Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.), 5998–6008. Retrieved from https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[42]
En Wang, Yiheng Jiang, Yuanbo Xu, Liang Wang, and Yongjian Yang. 2022a. Spatial-Temporal Interval Aware Sequential POI Recommendation. In Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE ’22). IEEE, 2086–2098. DOI:
[43]
En Wang, Yuanbo Xu, Yongjian Yang, Yiheng Jiang, Fukang Yang, and Jie Wu. 2023. Zone-Enhanced Spatio-Temporal Representation Learning for Urban POI Recommendation. IEEE Transactions on Knowledge and Data Engineering 35, 9 (2023), 9628–9641. DOI:
[44]
Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao. 2019. Learning Deep Transformer Models for Machine Translation. In Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL ’19), Volume 1 Long Papers. Anna Korhonen, David R. Traum, and Lluís Marquez (Eds.). Association for Computational Linguistics, 1810–1822. DOI:
[45]
Ziyu Wang, Wenhao Jiang, Yiming Zhu, Li Yuan, Yibing Song, and Wei Liu. 2022b. DynaMixer: A Vision MLP Architecture with Dynamic Mixing. In Proceedings of the International Conference on Machine Learning (ICML ’22), Vol. 162. Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.). PMLR, 22691–22701. Retrieved from https://proceedings.mlr.press/v162/wang22i.html
[46]
Zhenlei Wang, Jingsen Zhang, Hongteng Xu, Xu Chen, Yongfeng Zhang, Wayne Xin Zhao, and Ji-Rong Wen. 2021. Counterfactual Data-Augmented Sequential Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 347–356. DOI:
[47]
Guoqiang Wei, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. 2022. ActiveMLP: An MLP-Like Architecture with Active Token Mixer. arXiv:2203.06108. DOI:
[48]
Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, and Alexander J. Smola. 2007. COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking. In Proceedings of the Advances in Neural Information Processing Systems 20, Proceedings of the 21st Annual Conference on Neural Information Processing Systems. John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis (Eds.), Curran Associates, Inc., 1593–1600. Retrieved from https://proceedings.neurips.cc/paper/2007/hash/f76a89f0cb91bc419542ce9fa43902dc-Abstract.html
[49]
Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-Based Recommendation with Graph Neural Networks. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI ’19), Proceedings of the 31st Innovative Applications of Artificial Intelligence Conference (IAAI ’19), Proceedings of the 9th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI ’19). AAAI Press, 346–353. DOI:
[50]
Hangtong Xu, Yuanbo Xu, and Yongjian Yang. 2024c. Separating and Learning Latent Confounders to Enhancing User Preferences Modeling. arXiv:2311.03381. Retrieved from https://doi.org/10.48550/arXiv.2311.03381
[51]
Yuanbo Xu, Tian Li, Yongjian Yang, Weitong Chen, and Lin Yue. 2024a. An Adaptive Category-Aware Recommender Based on Dual Knowledge Graphs. Information Processing & Management 61, 3 (2024), 103636. DOI:
[52]
Yuanbo Xu, En Wang, Yongjian Yang, and Yi Chang. 2022a. A Unified Collaborative Representation Learning for Neural-Network Based Recommender Systems. IEEE Transactions on Knowledge and Data Engineering 34, 11 (2022), 5126–5139. DOI:
[53]
Yuanbo Xu, En Wang, Yongjian Yang, and Hui Xiong. 2024b. GS-RS: A Generative Approach for Alleviating Cold Start and Filter Bubbles in Recommender Systems. IEEE Transactions on Knowledge and Data Engineering 36, 2 (2024), 668–681. DOI:
[54]
Yuanbo Xu, Yongjian Yang, En Wang, Fuzhen Zhuang, and Hui Xiong. 2022b. Detect Professional Malicious User With Metric Learning in Recommender Systems. IEEE Transactions on Knowledge and Data Engineering 34, 9 (2022), 4133–4146. DOI:
[55]
Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, and Philippe Cudré-Mauroux. 2020. Location Prediction Over Sparse User Mobility Traces Using RNNs: Flashback in Hidden States! In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20), Christian Bessiere (Ed.). ijcai.org, 2184–2190. DOI:
[56]
Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. 2021. S\({}^{2}\)-MLPv2: Improved Spatial-Shift MLP Architecture for Vision. arXiv:2108.01072. Retrieved from https://arxiv.org/abs/2108.01072
[57]
Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. 2022. S\({}^{2}\)-MLP: Spatial-Shift MLP Architecture for Vision. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV ’22). IEEE, 3615–3624. DOI:
[58]
Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. 2019. A Simple Convolutional Generative Network for Next Item Recommendation. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19). J. Shane Culpepper, Alistair Moffat, Paul N. Bennett, and Kristina Lerman (Eds.). ACM, 582–590. DOI:
[59]
Guanghu Yuan, Fajie Yuan, Yudong Li, Beibei Kong, Shujie Li, Lei Chen, Min Yang, Chenyun YU, Bo Hu, Zang Li, Yu Xu, and Xiaohu Qie. 2022. Tenrec: A Large-Scale Multipurpose Benchmark Dataset for Recommender Systems. In Proceedings of the 36th Conference on Neural Information Processing Systems Datasets and Benchmarks Track. Retrieved from https://openreview.net/forum?id=PfuW84q25y9
[60]
Hengyu Zhang, Enming Yuan, Wei Guo, Zhicheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Xiu Li, and Ruiming Tang. 2022. Disentangling Past-Future Modeling in Sequential Recommendation via Dual Networks. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Mohammad Al Hasan and Li Xiong (Eds.), ACM, 2549–2558. DOI:
[61]
Shengyu Zhang, Dong Yao, Zhou Zhao, Tat-Seng Chua, and Fei Wu. 2021. CauseRec: Counterfactual User Sequence Synthesis for Sequential Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.), ACM, 367–377. DOI:
[62]
Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. 2022. Mixing and Shifting: Exploiting Global and Local Dependencies in Vision MLPs. arXiv:2202.06510. Retrieved from https://arxiv.org/abs/2202.06510
[63]
Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate Prediction. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI ’19), Proceedings of the 31st Innovative Applications of Artificial Intelligence Conference (IAAI ’19), Proceedings of the 9th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI ’19). AAAI Press, 5941–5948. DOI:
[64]
Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Yike Guo and Faisal Farooq (Eds.). ACM, 1059–1068. DOI:
[65]
Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux (Eds.). ACM, 1893–1902. DOI:
[66]
Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-Enhanced MLP is All You Need for Sequential Recommendation. In Proceedings of the ACM Web Conference (WWW ’22). Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM, 2388–2399. DOI:

Cited By

View all
  • (2025)Locally enhanced denoising self-attention networks and decoupled position encoding for sequential recommendationComputers and Electrical Engineering10.1016/j.compeleceng.2025.110064123(110064)Online publication date: Apr-2025
  • (2024)Sequential Recommendation for Optimizing Both Immediate Feedback and Long-term RetentionProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657829(1872-1882)Online publication date: 11-Jul-2024
  • (2024)GeoMamba: Toward Efficient Geography-Aware Sequential POI RecommendationIEEE Access10.1109/ACCESS.2024.348211612(167906-167918)Online publication date: 2024

Index Terms

  1. TriMLP: A Foundational MLP-Like Architecture for Sequential Recommendation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Information Systems
    ACM Transactions on Information Systems  Volume 42, Issue 6
    November 2024
    813 pages
    EISSN:1558-2868
    DOI:10.1145/3618085
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 October 2024
    Online AM: 10 June 2024
    Accepted: 24 May 2024
    Revised: 31 March 2024
    Received: 12 November 2023
    Published in TOIS Volume 42, Issue 6

    Check for updates

    Author Tags

    1. Sequential recommendation
    2. data mining
    3. multi-layer perceptron

    Qualifiers

    • Research-article

    Funding Sources

    • National Natural Science Foundation of China
    • Natural Science Foundation of China for Young Scholars
    • Jilin Education Science Foundation
    • Jilin Science and Technology Research Project
    • Jilin Science and Technology Development Project
    • Science and Technology Development Fund (FDCT), Macau SAR
    • Start-up Research Grant of University of Macau

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)604
    • Downloads (Last 6 weeks)54
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Locally enhanced denoising self-attention networks and decoupled position encoding for sequential recommendationComputers and Electrical Engineering10.1016/j.compeleceng.2025.110064123(110064)Online publication date: Apr-2025
    • (2024)Sequential Recommendation for Optimizing Both Immediate Feedback and Long-term RetentionProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657829(1872-1882)Online publication date: 11-Jul-2024
    • (2024)GeoMamba: Toward Efficient Geography-Aware Sequential POI RecommendationIEEE Access10.1109/ACCESS.2024.348211612(167906-167918)Online publication date: 2024

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media