skip to main content
10.1145/3698587.3701518acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

RBVS: Database of the Receptor-Based Virtual Screening

Published: 16 December 2024 Publication History

Abstract

In pharmaceutical arena, various computational methods especially the receptor-based virtual screening has played an important role in improving the success ratio of drug discovery. Numerous researches have been reported from 1990 to 2024. Comprehensively understanding of the influence of receptor-based virtual screening on drug discovery would greatly expedite the drug development process. Integrative information encompassing all related works can make significant help for researchers in pharmaceutical, biological, medicine, and computational biology fields. However, it is difficult to obtain the diverse data needed for integrative research from thousands of existing works. In this research, by extracting information from 1319 literature publications across 114 journals, we comprehensively charted the landscape of all existing receptor-based virtual screening works, encompassing 947 targets covering 283 diseases along with 9991 ligands. One complete network map including target proteins, "disease-target" nodes association, ligands, docking software and molecular characteristics, etc., were compiled to the database Receptor-Based Virtual Screening (RBVS, https://www.csuligroup.com/protein). Based on the RBVS database, researchers can (1) obtain one integrated 'disease-target' network map to timely identify the hottest targets associating with studied disease; (2) concentrate on more valuable and comprehensive information for target protein from different researching perspectives, and conduct more accurate and effective virtual screening strategies to reduce the time and experiment costs; (3) understand the researching trends of hot drug targets to identify more potential drug candidates; (4) improve the success ratio of yielding more effective drugs with more structural diversity and mother nuclear structure; (5) obtain more effective guidance for optimization of lead compounds to make useful guidance for subsequent pre-clinical experiments; (6) the accumulated data can serve as core fundamental data, facilitating researches in the artificial intelligence (AI) field.

References

[1]
Brown, F. K., Sherer, E. C., Johnson, S. A., Holloway, M. K., & Sherborne, B. S. (2017). The evolution of drug design at Merck Research Laboratories. Journal of computer-aided molecular design, 31(3), 255--266. https://doi.org/10.1007/s10822-016-9993-1.
[2]
Lin, X., Li, X., & Lin, X. (2020). A Review on Applications of Computational Methods in Drug Screening and Design. Molecules (Basel, Switzerland), 25(6), 1375. https://doi.org/10.3390/molecules25061375.
[3]
Cerqueira, N. M., Gesto, D., Oliveira, E. F., Santos-Martins, D., Brás, N. F., Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2015). Receptor-based virtual screening protocol for drug discovery. Archives of biochemistry and biophysics, 582, 56--67. https://doi.org/10.1016/j.abb.2015.05.011.
[4]
Patel, H., & Kukol, A. (2016). Evaluation of a novel virtual screening strategy using receptor decoy binding sites. Journal of negative results in biomedicine, 15(1), 15. https://doi.org/10.1186/s12952-016-0058-8.
[5]
Dong, X., Ebalunode, J. O., Yang, S. Y., & Zheng, W. (2011). Receptor-based pharmacophore and pharmacophore key descriptors for virtual screening and QSAR modeling. Current computer-aided drug design, 7(3), 181--189. https://doi.org/10.2174/157340911796504332.
[6]
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905--919. https://doi.org/10.1038/nprot.2016.051.
[7]
Ballante, F., Kooistra, A. J., Kampen, S., de Graaf, C., & Carlsson, J. (2021). Structure-Based Virtual Screening for Ligands of G Protein-Coupled Receptors: What Can Molecular Docking Do for You? Pharmacological reviews, 73(4), 527--565. https://doi.org/10.1124/pharmrev.120.000246.
[8]
Xu, X., Huang, M., & Zou, X. (2018). Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics reports, 4(1), 1 -16. https://doi.org/10.1007/s41048-017-0045-8.
[9]
Villoutreix, B. O., Eudes, R., & Miteva, M. A. (2009). Structure-based virtual ligand screening: recent success stories. Combinatorial chemistry & high throughput screening, 12(10), 1000--1016. https://doi.org/10.2174/138620709789824682.
[10]
Zhang, B., Li, H., Yu, K., & Jin, Z. (2022). Molecular docking-based computational platform for high-throughput virtual screening. CCF transactions on high performance computing, 4(1), 63--74. https://doi.org/10.1007/s42514-021-00086-5.
[11]
Zhao, Y., Zhu, Z., Chen, B., Qiu, S., Huang, J., Lu, X., Yang, W., Ai, C., Huang, K., He, C., Jin, Y., Liu, Z., & Wang, F. Y. (2023). Toward parallel intelligence: An interdisciplinary solution for complex systems. Innovation (Cambridge (Mass.)), 4(6), 100521. https://doi.org/10.1016/j.xinn.2023.100521.
[12]
Frabz, A., Buchholz, S., Albach, R., Schmid, R. (2024). Towards greener polymers: Trends in the German chemical industry. Green Carbon, 2(1), 33--34. https://doi.org/10.1016/j.greenca.2024.02.002.
[13]
Orsi, M., Probst, D., Schwaller, P., & Reymond, J. L. (2023). Alchemical analysis of FDA approved drugs. Digital discovery, 2(5), 1289--1296. https://doi.org/10.1039/d3dd00039g.
[14]
Yi, J., Lee, S., Lim, S., Cho, C., Piao, Y., Yeo, M., Kim, D., Kim, S., & Lee, S. (2023). Exploring chemical space for lead identification by propagating on chemical similarity network. Computational and structural biotechnology journal, 21, 4187--4195. https://doi.org/10.1016/j.csbj.2023.08.016.
[15]
Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T. I., & Overington, J. P. (2017). A comprehensive map of molecular drug targets. Nature reviews. Drug discovery, 16(1), 19--34. https://doi.org/10.1038/nrd.2016.230.
[16]
Pérez-Regidor, L., Zarioh, M., Ortega, L., & Martín-Santamaría, S. (2016). Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators. International journal of molecular sciences, 17(9), 1508. https://doi.org/10.3390/ijms17091508.
[17]
Roth, Y. D., Lian, Z., Pochiraju, S., Shaikh, B., & Karr, J. R. (2021). Datanator: an integrated database of molecular data for quantitatively modeling cellular behavior. Nucleic acids research, 49(D1), D516-D522. https://doi.org/10.1093/nar/gkaa1008.
[18]
Bissantz, C., Folkers, G., & Rognan, D. (2000). Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. Journal of medicinal chemistry, 43(25), 4759--4767. https://doi.org/10.1021/jm001044l.
[19]
Unoh, Y., Uehara, S., Nakahara, K., Nobori, H., Yamatsu, Y., Yamamoto, S., Maruyama, Y., Taoda, Y., Kasamatsu, K., Suto, T., Kouki, K., Nakahashi, A., Kawashima, S., Sanaki, T., Toba, S., Uemura, K., Mizutare, T., Ando, S., Sasaki, M., Orba, Y., ... Tachibana, Y. (2022). Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. Journal of medicinal chemistry, 65(9), 6499--6512. https://doi.org/10.1021/acs.jmedchem.2c00117.
[20]
Muegge, I., & Oloff, S. (2006). Advances in virtual screening. Drug discovery today. Technologies, 3(4), 405--411. https://doi.org/10.1016/j.ddtec.2006.12.002.
[21]
Farrell, C. M., Goldfarb, T., Rangwala, S. H., Astashyn, A., Ermolaeva, O. D., Hem, V., Katz, K. S., Kodali, V. K., Ludwig, F., Wallin, C. L., Pruitt, K. D., & Murphy, T. D. (2022). RefSeq Functional Elements as experimentally assayed nongenic reference standards and functional interactions in human and mouse. Genome research, 32(1), 175--188. https://doi.org/10.1101/gr.275819.121.
[22]
Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods in molecular biology (Clifton, N.J.), 1607, 627--641. https://doi.org/10.1007/978-1-4939-7000-1_26.
[23]
Zhou, Y., Zhang, Y., Zhao, D., Yu, X., Shen, X., Zhou, Y., Wang, S., Qiu, Y., Chen, Y., & Zhu, F. (2024). TTD: Therapeutic Target Database describing target draggability information. Nucleic acids research, 52(D1), D1465-D1477. https://doi.org/10.1093/nar/gkad751.
[24]
Hou, T., & Xu, X. (2004). Recent development and application of virtual screening in drug discovery: an overview. Current pharmaceutical design, 10(9), 1011--1033. https://doi.org/10.2174/1381612043452721.
[25]
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., Potapenko, A., ... Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590--596. https://doi.org/10.1038/s41586-021-03828-1.
[26]
Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M., & Noiman, S. (2006). An integrated in silico 3D model-driven discovery of a novel, potent, and selective amido sulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. Journal of medicinal chemistry, 49(11), 3116--3135. https://doi.org/10.1021/jm0508641.
[27]
Kontou, P. I., Pavlopoulou, A., Dimou, N. L., Pavlopoulos, G. A., & Bagos, P. G. (2016). Network analysis of genes and their association with diseases. Gene, 590(1), 68--78. https://doi.org/10.1016/j.gene.2016.05.044.
[28]
Feng, M., Pan, Y., Kong, R., & Shu, S. (2020). Therapy of Primary Liver Cancer. Innovation (Cambridge (Mass.)), 1(2), 100032. https://doi.org/10.1016/j.xinn.2020.100032.
[29]
Fierer, Jacob. O., Tovar-Herrera, O. E., Weinstein, J. Y., Kahn, A., Moraïs, S., Mizrahi, I., Bayer, E. A. (2023). Affinity-induced covalent protein-protein ligation via the SpyCatcher-SpyTag interaction. Green Carbon, 1(1), 2950--1555. https://doi.org/10.1016/j.greenca.2023.07.001.
[30]
Ou, Z., Yin, J., Wu, L., Ginhoux, F., Jin, X. (2023). Spatial transcriptomics in cancer research: Opportunities and challenges. The Innovation Life, 1(1), 100006. https://doi.org/10.59717/j.xinn-life.2023.100006.
[31]
Bento, A. P., Hersey, A., Félix, E., Landrum, G., Gaulton, A., Atkinson, F., Bellis, L. J., De Veij, M., & Leach, A. R. (2020). An open-source chemical structure curation pipeline using RDKit. Journal of cheminformatics, 12(1), 51. https://doi.org/10.1186/s13321-020-00456-1.
[32]
Khanna, V., & Ranganathan, S. (2009). Physiochemical property space distribution among human metabolites, drugs and toxins. BMC bioinformatics, 10 Suppl 15(Suppl 15), S10. https://doi.org/10.1186/1471-2105-10-S15-S10.
[33]
Khanna, V., & Ranganathan, S. (2011). Structural diversity of biologically interesting datasets: a scaffold analysis approach. Journal of cheminformatics, 3, 30. https://doi.org/10.1186/1758-2946-3-30.
[34]
Fang, S., Zheng, R., Lei, C., Wang, J., Zheng, R., & Li, M. (2021). Key residues influencing binding affinities of 2019-nCoV with ACE2 in different species. Briefings in bioinformatics, 22(2), 963--975. https://doi.org/10.1093/bib/bbaa329.
[35]
Zhang, J., Ding, N., Song, Y., Song, R., Pan, Y., Wang, L., Yan, S., Wang, Q., Ma, S., Wei, L., Yu, F., Lu, L., Zhang, F., Chen, C., & Zeng, H. (2021). Phylogenomic tracing of asymptomatic transmission in a COVID-19 outbreak. Innovation (Cambridge (Mass.)), 2(2), 100099. https://doi.org/10.1016/j.xinn.2021.100099.
[36]
Abbasian, M. H., Mahmanzar, M., Rahimian, K., Mahdavi, B., Tokhanbigli, S., Moradi, B., Sisakht, M. M., & Deng, Y. (2023). Global landscape of SARS-CoV-2 mutations and conserved regions. Journal of translational medicine, 21(1), 152. https://doi.org/10.1186/s12967-023-03996-w.
[37]
Balakrishnan, V., & Lakshminarayanan, K. (2021). Screening of FDA Approved Drugs Against SARS-CoV-2 Main Protease: Coronavirus Disease. International journal of peptide research and therapeutics, 27(1), 651 -658. https://doi.org/10.1007/s10989-020-10115-6.
[38]
Zha, Y., Chen, C., Jiao, Q. H, Zeng, X. M., (2024). Comprehensive profiling of antibiotic resistance genes in diverse environments and novel function discovery. The Innovation Life, 2(1): 100054. https://doi.org/10.59717/j.xinn-life.2024.100054.
[39]
Pan, B., Fang, S., Zhang, J., Pan, Y., Liu, H., Wang, Y., Li, M., & Liu, L. (2020). Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and structural biotechnology journal, 18, 3518--3527. https://doi.org/10.1016/j.csbj.2020.11.010.

Index Terms

  1. RBVS: Database of the Receptor-Based Virtual Screening
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Information & Contributors

                Information

                Published In

                cover image ACM Conferences
                BCB '24: Proceedings of the 15th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
                November 2024
                614 pages
                ISBN:9798400713026
                DOI:10.1145/3698587
                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Sponsors

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                Published: 16 December 2024

                Permissions

                Request permissions for this article.

                Check for updates

                Author Tags

                1. RBVS
                2. Virtual screening
                3. docking
                4. drug candidate
                5. drug discovery

                Qualifiers

                • Research-article
                • Research
                • Refereed limited

                Funding Sources

                Conference

                BCB '24
                Sponsor:

                Acceptance Rates

                Overall Acceptance Rate 254 of 885 submissions, 29%

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • 0
                  Total Citations
                • 40
                  Total Downloads
                • Downloads (Last 12 months)40
                • Downloads (Last 6 weeks)7
                Reflects downloads up to 23 Feb 2025

                Other Metrics

                Citations

                View Options

                Login options

                View options

                PDF

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                Figures

                Tables

                Media

                Share

                Share

                Share this Publication link

                Share on social media