skip to main content
article

Estimation of parameters and eigenmodes of multivariate autoregressive models

Published:01 March 2001Publication History
Skip Abstract Section

Abstract

Dynamical characteristics of a complex system can often be inferred from analysis of a stochastic time series model fitted to observations of the system. Oscillations in geophysical systems, for example, are sometimes characterized by principal oscillation patterns, eigenmodes of estimated autoregressive (AR) models of first order. This paper describes the estimation of eigenmodes of AR models of arbitrary order. AR processes of any order can be decomposed into eigenmodes with characteristic oscillation periods, damping times, and excitations. Estimated eigenmodes and confidence intervals for the eigenmodes and their oscillation periods and damping times can be computed from estimated models parameters. As a computationally efficient method of estimating the parameters of AR models from high-dimensional data, a stepwise least squares algorithm is proposed. This algorithm computes models of successively decreasing order. Numerical simulations indicate that, with the least squares algorithm, the AR model coefficients and the eigenmodes derived from the coefficients and eigenmodes are rough approximations of the confidence intervals inferred from the simulaitons.

References

  1. AKAIKE, H. 1971. Autoregressive model fitting for control. Ann. Inst. Stat. Math. 23, 163-180.Google ScholarGoogle Scholar
  2. ANDERSON, T. W. 1984. An Introduction to Multivariate Statistical Analysis. 2nd. John Wiley and Sons, Inc., New York, NY.Google ScholarGoogle Scholar
  3. ANSLEY,C.F.AND KOHN, R. 1983. Exact likelihood of a vector autoregressive moving average process with missing or aggregated data. Biometrika 70, 275-278.Google ScholarGoogle Scholar
  4. ANSLEY,C.FAND KOHN, R. 1986. A note on reparameterizing a vector autoregressive moving average model to enforce stationarity. J. Stat. Comput. Simul. 24, 2 (June), 99-106. Google ScholarGoogle Scholar
  5. BJ~RCK, A. 1996. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  6. DRAPER,N.AND SMITH, H. 1981. Applied Regression Analysis. 2nd. John Wiley and Sons, Inc., New York, NY.Google ScholarGoogle Scholar
  7. HANSEN, P. C. 1997. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, PA. Google ScholarGoogle Scholar
  8. HASSELMANN, K. 1988. PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 93, D9, 11015-11021.Google ScholarGoogle Scholar
  9. HIGHAM, N. J. 1996. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA. Google ScholarGoogle Scholar
  10. HONERKAMP, J. 1994. Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VCH Publishers, New York, NY.Google ScholarGoogle Scholar
  11. HUANG,B.H.AND SHUKLA, J. 1997. Characteristics of the interannual and decadal variability in a general circulation model of the tropical Atlantic Ocean. J. Phys. Oceanogr. 27, 1693-1712.Google ScholarGoogle Scholar
  12. L~TKEPOHL, H. 1985. Comparison of criteria for estimating the order of a vector autoregressive process. J. Time Ser. Anal. 6, 35-52. Correction, Vol 8 (1987), page 373.Google ScholarGoogle Scholar
  13. L~TKEPOHL, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  14. MENTZ,R.P.,MORETTIN,P.A.,AND TOLOI, C. M. C. 1988. On residual variance estimation in autoregressive models. J. Time Ser. Anal. 19, 187-208.Google ScholarGoogle Scholar
  15. NANKERVIS,J.C.AND SAVIN, N. E. 1988. The Student's t approximation in a stationary first order autoregressive model. Econometrica 56, 119-145.Google ScholarGoogle Scholar
  16. NEUMAIER, A. 1998. Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM Rev. 40, 3, 636-666. Google ScholarGoogle Scholar
  17. PAULSEN,J.AND TJOSTHEIM, D. 1985. On the estimation of residual variance and order in autoregressive time series. J. Roy. Statist. Soc. B47, 216-228.Google ScholarGoogle Scholar
  18. PENLAND,C.AND SARDESHMUKH, P. D. 1995. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8, 1999-2024.Google ScholarGoogle Scholar
  19. SCHNEIDER,T.AND NEUMAIER, A. 2001. Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 1 (Mar.), 58-65. Google ScholarGoogle Scholar
  20. SCHWARZ, G. 1978. Estimating the dimension of a model. Ann. Stat. 6, 461-464.Google ScholarGoogle Scholar
  21. TIAO,G.C.AND BOX, G. E. P. 1981. Modeling multiple time series with applications. J. Amer. Statist. Assoc. 76, 802-816.Google ScholarGoogle Scholar
  22. TJOSTHEIM,D.AND PAULSEN, J. 1983. Bias of some commonly used time series estimates. Biometrika 70, 389-399.Google ScholarGoogle Scholar
  23. VON STORCH,H.AND ZWIERS, F. W. 1999. Statistical Analysis in Climate Research. Cambridge University Press, New York, NY.Google ScholarGoogle Scholar
  24. VON STORCH, H., B~RGER, G., SCHNUR, R., AND VON STORCH, J.-S. 1995. Principal oscillation patterns: A review. J. Clim. 8, 377-400.Google ScholarGoogle Scholar
  25. WEI, W. W. S. 1994. Time Series Analysis. Addison-Wesley Publishing Co., Inc., Redwood City, CA.Google ScholarGoogle Scholar
  26. WILKINSON, J. H. 1965. The Algebraic Eigenvalue Problem. Clarendon Oxford Science Publications, Oxford, UK. Google ScholarGoogle Scholar
  27. XU,J.S.AND VON STORCH, H. 1990. Predicting the state of the Southern Oscillation using principal oscillation pattern analysis. J. Clim. 3, 1316-1329.Google ScholarGoogle Scholar

Index Terms

  1. Estimation of parameters and eigenmodes of multivariate autoregressive models

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in

                    Full Access

                    • Published in

                      cover image ACM Transactions on Mathematical Software
                      ACM Transactions on Mathematical Software  Volume 27, Issue 1
                      March 2001
                      140 pages
                      ISSN:0098-3500
                      EISSN:1557-7295
                      DOI:10.1145/382043
                      Issue’s Table of Contents

                      Copyright © 2001 ACM

                      Publisher

                      Association for Computing Machinery

                      New York, NY, United States

                      Publication History

                      • Published: 1 March 2001
                      Published in toms Volume 27, Issue 1

                      Permissions

                      Request permissions about this article.

                      Request Permissions

                      Check for updates

                      Qualifiers

                      • article

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader