skip to main content
article

A revised simplex method with integer Q-matrices

Published:01 September 2001Publication History
Skip Abstract Section

Abstract

We describe a modification of the simplex formulas in which Q-matrices are used to implement exact computations with an integer multiprecision library. Our motivation comes from the need for efficient and exact incremental solvers in the implementation of constraint solving languages such as Prolog. We explain how to reformulate the problem and the different steps of the simplex algorithm. We compare some measurements obtained with integer and rational computations.

References

  1. AZULAY, D.-O. 1999. Programmation lin~aire exacte avec Q-matrices. Ph.D. dissertation. Laboratoire d'Informatique de Marseille, Universit~ de la M~diterran~e.]]Google ScholarGoogle Scholar
  2. AZULAY, D.-O. 2001. Expecting a better numerical precision for some linear constraints. ACM Trans. Math. Softw., submitted.]]Google ScholarGoogle Scholar
  3. AZULAY, D.-O. AND PIQUE, J.-F. 1998. Optimized Q-pivot for exact linear solvers. In Principles and Practice of Constraint Programming (Pisa, Italy, Oct.), M. Maher and J.-F. Puget, Eds., Springer- Verlage New York, pp. 55-71.]] Google ScholarGoogle Scholar
  4. BAREISS, E. H. 1968. Sylvester's identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22, 565-578.]]Google ScholarGoogle Scholar
  5. BAREISS, E. H. 1972. Computational solutions of matrix problems over an integral domain. J. Inst. Maths Applics 10, 68-104.]]Google ScholarGoogle Scholar
  6. BENHAMOU, F., BOUVIER, F., COLMERAUER, A., GARRETA, H., GILLETA, B., MASSAT,J.,AND NARBONI,G. 1996. Manual of Prolog IV. Prologia.]]Google ScholarGoogle Scholar
  7. BIXBY, R. E. 1992. Implementing the simplex method: The initial basis. ORSA J. Comput. 4,3, 267-284.]]Google ScholarGoogle Scholar
  8. BIXBY, R. E. 1994. Progress in linear programming. ORSA J. Comput. 6, 1, 15-22.]]Google ScholarGoogle Scholar
  9. CHV~TAL, V. 1983. Linear Programming W. H. Freeman and Company.]]Google ScholarGoogle Scholar
  10. EDMONDS, J. 1994. Exact pivoting. For ECCO VII.]]Google ScholarGoogle Scholar
  11. EDMONDS,J.AND MAURRAS, J.-F. 1997. Notes sur les Q-matrices d'Edmonds. RAIRO 31, 2, 203-209.]]Google ScholarGoogle Scholar
  12. GOLDFARB,D.AND REID, J. 1977. A practicable steepest-edge simplex algorithm. Math. Prog. 12, 361-371.]]Google ScholarGoogle Scholar
  13. GRANLUND, T. 1996. The GNU Multiple Precision Arithmetic Library (2.0.2 ed.). Free Software Foundation.]]Google ScholarGoogle Scholar
  14. IEEE. 1985. IEEE Standard for Binary Floating-Point Arithmetic, NASI/IEEE 754-1985. Institute of Electrical and Electronics Engineers.]]Google ScholarGoogle Scholar
  15. PIQUE, J.-F. 1995. Un algorithme efficace pour l'implantation de contraintes arithm~tiques en pr~cision infinie. In Real Numbers and Computers Conferences (Saint- ~tienne, France, Apr.). J.-C. Bajard, D. Michelucci, J.-M. Moreau, and J.-M. Muller, Eds. pp. 289-293.]]Google ScholarGoogle Scholar

Index Terms

  1. A revised simplex method with integer Q-matrices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader