skip to main content
10.1145/508791.508818acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
Article

Statistical properties of the simulated time horizon in conservative parallel discrete-event simulations

Published:11 March 2002Publication History

ABSTRACT

We investigate the universal characteristics of the simulated time horizon of the basic conservative parallel algorithm when implemented on regular lattices. This technique [1, 2] is generically applicable to various physical, biological, or chemical systems where the underlying dynamics is asynchronous. Employing direct simulations, and using standard tools and the concept of dynamic scaling from non-equilibrium surface/interface physics, we identify the universality class of the time horizon and determine its implications for the asymptotic scalability of the basic conservative scheme. Our main finding is that while the simulation converges to an asymptotic nonzero rate of progress, the statistical width of the time horizon diverges with the number of PEs in a power law fashion. This is in contrast with the findings of Ref. [3]. This information can be very useful, e.g., we utilize it to understand optimizing the size of a moving "time window" to enforce memory constraints.

References

  1. B. D. Lubachevsky. Efficient Parallel Simulations of Asynchronous Cellular Arrays. Complex Systems 1, 1099-1123 (1987).Google ScholarGoogle Scholar
  2. B. D. Lubachevsky. Efficient Parallel Simulations of Dynamic Ising Spin Systems. J. Comput. Phys.75, 103-122 (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. G. Greenberg, S. Shenker, and A. L. Stolyar. Asynchronous Updates in Large Parallel Systems. Proc. ACM SIGMETRICS, Performance Eval. Rev.24, 91-103 (1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Fujimoto. Parallel Discrete Event Simulation. Commun. of the ACM33, 30-53 (1990). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. M. Nicol and R. M. Fujimoto. Parallel Simulation Today. Annals of Operations Research53 249-285 (1994).Google ScholarGoogle Scholar
  6. K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics. an Introduction, 3rd ed. (Springer, Berlin, 1997).Google ScholarGoogle Scholar
  7. K. M. Chandy and J. Misra. Distributed Simulation: a Case Study in Design and Verification of Distributed Programs. IEEE Trans. on Softw. Eng.SE-5, 440-452 (1979).Google ScholarGoogle Scholar
  8. K. M. Chandy and J. Misra. Asynchronous Distributed Simulation via a Sequence of Parallel Computations. Commun. ACM24, 198-205 (1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. J. Glauber. Time-Dependent Statistics of the Ising Model. J. Math. Phys.4, 294 (1963).Google ScholarGoogle Scholar
  10. G. Korniss, M. A. Novotny, and P. A. Rikvold. Parallelization of a Dynamic Monte Carlo Algorithm: a Partially Rejection-Free Conservative Approach. J. Comput. Phys.153, 488-508 (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny. "Dynamic Phase Transition, Universality, and Finite-Size Scaling in the Two-Dimensional Kinetic Ising Model in an Oscillating. Phys. Rev. E63, 016120 (2001).Google ScholarGoogle Scholar
  12. A.-L. Barabási and H. E. Stanley. Fractal Concepts in Surface Growth. (Cambridge University Press, Cambridge, 1995)Google ScholarGoogle Scholar
  13. Timothy Halpin-Healy and Yi-Cheng Zhang. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep.254 215-414 (1995).Google ScholarGoogle Scholar
  14. J. Krug. Origins of scale invariance in growth processes. Adv. Phys.46, 139-282 (1997).Google ScholarGoogle Scholar
  15. B. J. Overeinder. Distributed Event-driven Simulation: Scheduling Stategies and Resource Management. Ph.D. thesis, Universiteit van Amsterdam, 2000.Google ScholarGoogle Scholar
  16. B. J. Overeinder, A. Schoneveld, and P. M. A. Sloot. Self-organized Criticality in Optimistic Simulation of Correlated Systems. J. Parallel and Distributed Computing, submitted.Google ScholarGoogle Scholar
  17. B. J. Overeinder, A. Schoneveld, and P. M. A. Sloot. Spatio-temporal correlations and rollback distributions in optimistic simulations. Proceedings of the 15th Workshop on Parallel and Distributed Simulation (IEEE Comput. Soc., Los Alamitos, CA, 2001) p. 145-152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. E. Felderman and L. Kleinrock. Bounds and Approximations for Self-Initiating Distributed Simulation without Lookahead. ACM Trans. Model. Comput. Simul. 1, 386 (1991). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. M. Nicol. Parallel Self-Initiating Discrete-Event Simulations. ACM Trans. Model. Comput. Simul. 1, 24 (1991). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. S. Steinman. Breathing Time Warp. in Proceedings of the 7th Workshop on Parallel and Distributed Simulation (PADS'93), Vol. 23, No. 1, edited by R. Bagrodia and D. Jefferson (Soc. Comput. Simul., San Diego, CA, 1993), p. 109-118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. S. Steinman. Discrete-Event Simulation and the Event Horizon. in Proceedings of the 8th Workshop on Parallel and Distributed Simulation (PADS'94), edited by D. K. Arvind, R. Bagrodia, and J. Y.-B. Lin (Soc. Comput. Simul., San Diego, CA, 1994), p. 39-49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. S. Steinman. Discrete-Event Simulation and the Event Horizon II: Event List Management. in Proceedings of the 9th Workshop on Parallel and Distributed Simulation (PADS'96), (IEEE Comput. Soc. Press, Los Alamitos, CA, 1996), p. 170-178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Family and T. Vicsek. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75-81 (1985)Google ScholarGoogle ScholarCross RefCross Ref
  24. G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold. From Massively Parallel Algorithms and Fluctuating Time Horizons to Non-equilibrium Surface Growth. Phys. Rev. Lett.84, 1351-1354 (2000).Google ScholarGoogle Scholar
  25. M. Kardar, G. Parisi, and Y.-C. Zhang. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett.56, 889-892 (1986).Google ScholarGoogle Scholar
  26. G. Korniss, M. A. Novotny, Z. Toroczkai, and P. A. Rikvold. Nonequilibrium Surface Growth and Scalability of Parallel Algorithms for Large Asynchronous Systems. in Computer Simulation Studies in Condensed Matter Physics XIII, Springer Proceedings in Physics, Vol. 86, editors D. P. Landau, S. P. Lewis, and H.-B. Schüttler (Springer-Verlag, Berlin, Heidelberg, 2001), p. 183-188.Google ScholarGoogle Scholar
  27. Z. Toroczkai, G. Korniss, S. Das Sarma, and R. K. P. Zia. Extremal Point Densities of Interface Fluctuations. Phys. Rev. E62, 276 (2000).Google ScholarGoogle Scholar
  28. J. Krug and P. Meakin. Universal Finite-Size Effects in the Rate of Growth Processes. J. Phys. A23, L987 (1990).Google ScholarGoogle Scholar
  29. S. Raychaudhuri, M. Cranston, C. Przybyla, and Y. Shapir. Maximal Height Scaling of Kinetically Growing Surfaces. Phys. Rev. Lett.87, 136101 (2001).Google ScholarGoogle Scholar

Index Terms

  1. Statistical properties of the simulated time horizon in conservative parallel discrete-event simulations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SAC '02: Proceedings of the 2002 ACM symposium on Applied computing
        March 2002
        1200 pages
        ISBN:1581134452
        DOI:10.1145/508791

        Copyright © 2002 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 March 2002

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate1,650of6,669submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader