skip to main content
10.1145/775832.776057acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
Article

Designing and implementing small quantum circuits and algorithms

Published:02 June 2003Publication History

ABSTRACT

It appears, in principle, that the laws of quantum mechanics allow a quantum computer to solve certain mathematical problems more rapidly than can be done using a classical computer. However, in order to build such a quantum computer a number of technological problems need to be overcome. A stepping stone to this goal is the implementation of relatively simple quantum algorithms using current experimental techniques.This paper explores small scale quantum algorithms from two different perspectives. Firstly, it will be shown how small scale quantum algorithms can be tailored to fit current schemes for implementing a quantum computer. Secondly, I will review a simple model of computation, based on read-only-memory. This model allows the comparison of the space-efficiency of reversible error-free classical computation with reversible, error-free quantum computation. The quantum model has been shown to be more powerful than the classical model.

References

  1. D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs, 2000. quant-ph/ 0012090.Google ScholarGoogle Scholar
  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52(5):3457, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland. Observation of quantum jumps in a single atom. Physical Review Letters, 57:1699, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Blatt. Laser cooling of trapped ions. In J. Dalibar, J. Raimond, and J. Zinn-Justin, editors, Fundamental Systems in Quantum Optics, Les Houches, 1990. Elsevier Science Publishers.Google ScholarGoogle Scholar
  5. J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical Review Letters, 74(20):4091, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. D'Helon and G. J. Milburn. Measurements on trapped laser-cooled ions using quantum computations. Physical Review A, 54(6):5141, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland. Laser cooling to the zero point energy of motion. Physical Review Letters, 62:403, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  8. Fortschr Phys. Special issues on quantum computation, 4-8 46 (1998) and 9-11 48 (2000).Google ScholarGoogle Scholar
  9. P. K. Ghosh. Ion Traps. Clarendon Press, Oxford, 1995.Google ScholarGoogle Scholar
  10. L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2):325, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. J. Hughes, D. F. V. James, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, M. M. Schauer, C. M. Simmons, C. E. Thorburn, D. Tupa, P. Z. Wang, and A. G. White. The los alamos trapped ion quantum computer experiment. Fortschr. Phys., 46:329--362, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. F. V. James. Quantum dynamics of cold trapped ions, with applications to quantum computation. Applied Phyics B, 66:181--190, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  13. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Physical Review Letters, 75(22):4011, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland. A "Schrödinger cat" superposition state of an atom. Science, 272:1131, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  15. W. Nagourney, J. Sandberg, and H. Dehmelt. Shelved optical electron amplifier: Observation of quantum jumps. Physical Review Letters, 56:2797, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Nayak and A. Vishwanath. Quantum walk on the line, 2000. quant-ph/0010117.Google ScholarGoogle Scholar
  17. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. W. Paul. Electromagnetic traps for charged and neutral particles. Review of Modern Physics, 62:531--540, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  19. C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt. Quantum state engineering on an optical transition and decoherence in a paul trap. Physical Review Letters, 83:4713, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  20. C. A. Sackett. Quantum information experiments with trapped ions: status and prospects. Quantum Information and Computation, 1(2):57--80, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. Observation of quantum jumps. Physical Review Letters, 57:1696, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. Proc. 35th Annual Symposium on Foundations of Computer Science, page 124, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Stenholm. The semiclassical theory of laser cooling. Review of Modern Physics, 58:699--739, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  24. D. R. Sypher, I. M. Brereton, H. M. Wiseman, B. L. Hollis, and B. C. Travaglione. Read-only memory-based quantum computation: Experimental explorations using nuclear magnetic resonance and future prospects. Physical Review A, 66:012306, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  25. T. Toffoli. Reversible computing. In J. W. de~Bakker and J. van Leeuwen, editors, Automata, Languages and Programming, page 632, 1980. Google ScholarGoogle Scholar
  26. B. C. Travaglione. Smale Scale Quantum Algorithms. PhD thesis, Department of Physics, University of Queensland, Queensland, Australia, August 2002.Google ScholarGoogle Scholar
  27. B. C. Travaglione and G. J. Milburn. Implementing the quantum random walk. Physical Review A, 65:032310, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  28. B. C. Travaglione, M. A. Nielsen, H. M. Wiseman, and A. Ambainis. ROM-based computation: Quantum versus classical. Quantum Information and Computation, 2(4):324--332, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. J. Wineland and W. M. Itano. Laser cooling of atoms. Physical Review A, 20:1521, 1979.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Designing and implementing small quantum circuits and algorithms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        DAC '03: Proceedings of the 40th annual Design Automation Conference
        June 2003
        1014 pages
        ISBN:1581136889
        DOI:10.1145/775832

        Copyright © 2003 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 June 2003

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        DAC '03 Paper Acceptance Rate152of628submissions,24%Overall Acceptance Rate1,770of5,499submissions,32%

        Upcoming Conference

        DAC '24
        61st ACM/IEEE Design Automation Conference
        June 23 - 27, 2024
        San Francisco , CA , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader