skip to main content
10.1145/780542.780552acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Exponential algorithmic speedup by a quantum walk

Published:09 June 2003Publication History

ABSTRACT

We construct a black box graph traversal problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our black box setting. We then show how this quantum walk solves our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve the problem in subexponential time.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Proc. of the 33rd ACM Symp. on Theory of Computing, pages 50--59, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In Proc. 35th ACM Symp. on Theory of Computing, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional quantum walks. In Proc. 33rd ACM Symp. on Theory of Computing, pages 37--49, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. N. de Beaudrap, R. Cleve, and J. Watrous. Sharp quantum vs. classical query complexity separations. Algorithmica, 34:449--461, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. on Computing, 26:1411--1473, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. M. Childs, E. Farhi, and S. Gutmann. An example of the difference between quantum and classical random walks. Quantum Information Processing, 1:35--43, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. van Dam and S. Hallgren. Efficient quantum algorithms for shifted quadratic character problems. quant-ph/0011067.]]Google ScholarGoogle Scholar
  9. W. van Dam and G. Seroussi. Efficient quantum algorithms for estimating Gauss sums. Unpublished.]]Google ScholarGoogle Scholar
  10. D. Deutsch. Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc. Roy. Soc. London A, 400:96--117, 1985.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy. Soc. London A, 439:553--558, 1992.]]Google ScholarGoogle ScholarCross RefCross Ref
  12. E. Farhi and S. Gutmann. Quantum computation and decision trees. Phys. Rev. A, 58:915--928, 1998.]]Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Goldstone. Personal communication, Sept. 2002.]]Google ScholarGoogle Scholar
  14. M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In Proc. 33rd ACM Symp. on Theory of Computing, pages 68--74, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Hallgren. Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem. In Proc. 34th ACM Symp. on Theory of Computing, pages 653--658, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Hallgren, A. Russell, and A. Ta-Shma. Normal subgroup reconstruction and quantum computation using group representations. In Proc. 32nd ACM Symp. on Theory of Computing, pages 627--635, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Ivanos, F. Magniez, and M. Santha. Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. quant-ph/0102014.]]Google ScholarGoogle Scholar
  18. J. Kempe. Quantum random walks hit exponentially faster. quant-ph/0205083.]]Google ScholarGoogle Scholar
  19. A. Kitaev. Quantum measurements and the abelian stabilizer problem. quant-ph/9511026.]]Google ScholarGoogle Scholar
  20. S. Lloyd. Universal quantum simulators, Science 273:1073--1078, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  21. D. A. Meyer. From quantum cellular automata to quantum lattice gasses. J. Stat. Phys., 85:551--574, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Moore and A. Russell. Quantum walks on the hypercube. In Proc. of RANDOM 02, Vol. 2483 of LNCS, pages 164--178, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Mosca and A. Ekert. The hidden subgroup problem and eigenvalue estimation on a quantum computer. In Proc. 1st NASA International Conf. on Quantum Computing and Quantum Communication, Vol. 1509 of LNCS, pages 174--188, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information Cambridge University Press, Cambridge, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. SIAM J. on Computing, 26:1484--1509, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Simon. On the power of quantum computation. SIAM J. on Computing, 26:1474--1483, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz., 3:25--30, 1964.]]Google ScholarGoogle Scholar
  28. J. Watrous. Quantum algorithms for solvable groups. In Proc. 33rd ACM Symposium on Theory of Computing, pages 60--67, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Watrous. Quantum simulations of classical random walks and undirected graph connectivity. J. Computer and System Sciences, 62:376--391, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Wigderson. The complexity of graph connectivity. In Proc. 17th Mathematical Foundations of Computer Science Conf., Vol. 629 of LNCS, pages 112--132, 1992.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Exponential algorithmic speedup by a quantum walk

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '03: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
      June 2003
      740 pages
      ISBN:1581136749
      DOI:10.1145/780542

      Copyright © 2003 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 June 2003

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      STOC '03 Paper Acceptance Rate80of270submissions,30%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader