skip to main content
10.1145/781606.781623acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
Article

Efficient computation of a simplified medial axis

Published:16 June 2003Publication History

ABSTRACT

Applications of of the medial axis have been limited because of its instability and algebraic complexity. In this paper, we use a simplification of the medial axis, the θ-SMA, that is parameterized by a separation angle (θ) formed by the vectors connecting a point on the medial axis to the closest points on the boundary. We present a formal characterization of the degree of simplification of the θ-SMA as a function of θ, and we quantify the degree to which the simplified medial axis retains the features of the original polyhedron.We present a fast algorithm to compute an approximation of the θ-SMA. It is based on a spatial subdivision scheme, and uses fast computation of a distance field and its gradient using graphics hardware. The complexity of the algorithm varies based on the error threshold that is used, and is a linear function of the input size. We have applied this algorithm to approximate the SMA of models with tens or hundreds of thousands of triangles. Its running time varies from a few seconds, for a model consisting of hundreds of triangles, to minutes for highly complex models.

References

  1. N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc. ACM Solid Modeling, pages 249--260, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Attali and J. Boissonnat. A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. In Proc. ACM Solid Modeling, pages 139--146, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Attali and A. Montanvert. Computing and simplifying 2d and 3d continuous skeletons. Computer Vision and Image Understanding, 67(3):261--273, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. August, A. Tannenbaum, and S. Zucker. On the evolution of the skeleton. In Proc. Int. Conf. on Computer Vision, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  5. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362--380. MIT Press, 1967.Google ScholarGoogle Scholar
  6. J.-D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM Trans. Graph., 3(4):266--286, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In ACM Symp. Computational Geometry, pages 223--232, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C.-S. Chiang. The Euclidean distance transform. Ph.D. thesis, Dept. Comput. Sci., Purdue Univ., West Lafayette, IN, Aug. 1992. Report CSD-TR 92-050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform. Pacific J. Math., 181(1):56--88, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. W. Choi and H.-P. Seidel. Linear onesided stability of MAT for weakly injective 3D domain. In Proc. ACM Solid Modeling, pages 344--355, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Culver, J. Keyser, and D. Manocha. Accurate computation of the medial axis of a polyhedron. In Proc. ACM Solid Modeling, pages 179--190, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227--248, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. K. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex. In Proc. ACM Solid Modeling, pages 356--366, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with a convergence guarantee. In European Symp. Algorithms, pages 387--398, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Dutta and C. M. Hoffmann. A geometric investigation of the skeleton of CSG objects. In Proc. ASME Conf. Design Automation, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Etzion and A. Rappoport. Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts. In Proc. ACM Solid Modeling, pages 167--178, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of generalized Voronoi diagrams using graphics hardware. Proc. ACM SIGGRAPH, pages 277--286, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. M. Hoffmann. How to construct the skeleton of CSG objects. In Proc. 4th IMA Conf. on The Mathematics of Surfaces, Bath, UK, 1990. Oxford University Press.Google ScholarGoogle Scholar
  19. L. Lam, S.-W. Lee, and C. Y. Chen. Thinning methodologies---A comprehensive survey. IEEE Trans. PAMI, 14(9):869--885, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with swept sphere volumes. Technical Report TR99-018, Dept. Comput. Sci., University of North Carolina, 1999.Google ScholarGoogle Scholar
  21. V. Milenkovic. Robust construction of the Voronoi diagram of a polyhedron. In Proc. 5th Canad. Conf. Comput. Geom., pages 473--478, 1993.Google ScholarGoogle Scholar
  22. I. Ragnemalm. The euclidean distance transformation in arbitrary dimensions. Pattern Recognition Letters, 14:883--888, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Reddy and G. Turkiyyah. Computation of 3D skeletons using a generalized Delaunay triangulation technique. Computer-Aided Design, 27:677--694, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  24. E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. Computation of the medial axis transform of 3-D polyhedra. In Proc. ACM Solid Modeling, pages 187--199. ACM, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. The Hamilton-Jacobi skeleton. In International Conf. Computer Vision, pages 828--834, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. W. Storti, G. M. Turkiyyah, M. A. Ganter, C. T. Lim, and D. M. Stal. Skeleton-based modeling operations on solids. In Proc. ACM Solid Modeling, pages 141--154, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Styner, G. Gerig, S. Joshi, and S. Pizer. Automatic and robust computation of 3D medial models incorporating object variability. International Journal of Computer Vision, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Taubin. A signal processing approach to fair surface design. In Proc. ACM SIGGRAPH, pages 351--358, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. G. M. Turkiyyah, D. W. Storti, M. Ganter, H. Chen, and M. Vimawala. An accelerated triangulation method for computing the skeletons of free-form solid models. Computer-Aided Design, 29(1):5--19, Jan. 1997.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Vleugels and M. Overmars. Approximating generalized Voronoi diagrams in any dimension. Technical Report UU-CS-1995-14, Dept. Comput. Sci., Utrecht University, 1995.Google ScholarGoogle Scholar
  31. S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Motion planning for a rigid body using random networks on the medial axis of the free space. ACM Symp. Computational Geometry, pages 173--180, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Y. Y. Zhang and P. S. P. Wang. Analytical comparison of thinning algorithms. Int. J. Pattern Recognit. Artif. Intell., 7:1227--1246, 1993.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Efficient computation of a simplified medial axis

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SM '03: Proceedings of the eighth ACM symposium on Solid modeling and applications
            June 2003
            362 pages
            ISBN:1581137060
            DOI:10.1145/781606

            Copyright © 2003 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 June 2003

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            SM '03 Paper Acceptance Rate43of80submissions,54%Overall Acceptance Rate86of173submissions,50%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader