skip to main content
10.1145/1201775.882365acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Nonlinear optimization framework for image-based modeling on programmable graphics hardware

Published:01 July 2003Publication History

ABSTRACT

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to modern graphics processors. Our framework is particularly well suited for solving image-based modeling problems since it can be used to represent a large and diverse class of these problems using a common formulation. We successfully apply this approach to two distinct image-based modeling problems: light field mapping approximation and fitting the Lafortune model to spatial bidirectional reflectance distribution functions. Comparing the performance of the graphics hardware implementation to a CPU implementation, we show more than 5-fold improvement.

Skip Supplemental Material Section

Supplemental Material

hillesland_nonlinear.mp4

mp4

35.5 MB

References

  1. BISHOP, C. M. 1995. Neural Networks for Pattern Recognition. Clarendon Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. ACM Transactions on Graphics 22, 3 (July). (Proceedings of ACM SIGGRAPH 2003) Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. CARR, N. A., HALL, J. D., AND HART, J. C. 2002. Ray Engine. 2000 SIGGRAPH / Eurographics Workshop on Graphics Hardware, 1--10.Google ScholarGoogle Scholar
  4. CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND GRZESZCZUK, R. 2002. Light Field Mapping: Efficient Representation and Hardware Rendering of Surface Light Fields. ACM Transactions on Graphics 21, 3 (July), 447--456. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. DENNIS, J. E. J., AND SCHNABEL, R. B. 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics, 16. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. FURUKAWA, R., KAWASAKI, H., IKEUCHI, K., AND SAKAUCHI, M. 2002. Appearance Based Object Modeling Using Texture Database: Acquisition, Compression and Rendering. Eurographics Rendering Workshop 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. HARRIS, M. J., COOMBE, G., SCHEUERMANN, T., AND LASTRA, A. 2002. Physically-Based Visual Simulation on Graphics Hardware. 2002 SIGGRAPH / Eurographics Workshop on Graphics Hardware, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. HOFF, K., CULVER, T., KEYSER, J., LIN, M., AND MANOCHA, D. 1999. Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. KAUTZ, J., AND MCCOOL, M. D. 1999. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. Eurographics Rendering Workshop 1999 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. KHAILANY, B., DALLY, W. J., RIXNER, S., KAPASI, U. J., MATTSON, P., NAMKOONG, J., OWENS, J. D., TOWLES, B., AND CHANG, A. 2001. Imagine: Media Processing with Streams. IEEE Micro (March/April), 35--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. KRÜGER, J., AND WESTERMANN, R. 2003. Linear Algebra Operators for GPU Implementation of Numerical Algorithms. ACM Transactions on Graphics 22, 3 (July). (Proceedings of ACM SIGGRAPH 2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. LAFORTUNE, E. P. F., FOO, S.-C., TORRANCE, K. E., AND GREENBERG, D. P. 1997. Non-Linear Approximation of Reflectance Functions. Proceedings of SIGGRAPH 97 (August), 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A User-Programmable Vertex Engine. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 149--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. MCALLISTER, D. K., LASTRA, A., AND HEIDRICH, W. 2002. Efficient Rendering of Spatial Bidirectional Reflectance Distribution Functions. Eurographics Rendering Workshop 2002 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. MCCOOL, M. D., ANG, J., AND AHMAD, A. 2001. Homomorphic Factorization of BRDFs for High-Performance Rendering. Proceedings of SIGGRAPH 2001 (August), 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. NISHINO, K., SATO, Y., AND IKEUCHI, K. 1999. Eigen-Texture Method: Appearance Compression Based on 3D Model. In Proceedings of the IEEE Computer Science Conference on Computer Vision and Pattern Recognition (CVPR-99), 618--624.Google ScholarGoogle ScholarCross RefCross Ref
  17. PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002. Ray Tracing on Programmable Graphics Hardware. ACM Transactions on Graphics 21, 3 (July), 703--712. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. SATO, Y., WHEELER, M. D., AND IKEUCHI, K. 1997. Object Shape and Reflectance Modeling from Observation. Proceedings of SIGGRAPH 97 (August), 379--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. STRZODKA, R., AND RUMPF, M. 2001. Nonlinear Diffusion in Graphics Hardware. Proceedings EG/IEEE TCVG Symposium on Visualization, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. THOMPSON, C. J., HAHN, S., AND OSKIN, M. 2002. Using Modern Graphics Architectures for General-Purpose Computing: A Framework and Analysis. Proceedings of 35th International Symposium on Microarchitecture (MICRO-35). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. YANG, R., WELCH, G., AND BISHOP, G. 2002. Real-Time Consensus-Based Scene Reconstruction using Commodity Graphics Hardware. Proceedings of Pacific Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. YU, Y., DEBEVEC, P. E., MALIK, J., AND HAWKINS, T. 1999. Inverse Global Illumination: Recovering Reflectance Models of Real Scenes From Photographs. Proceedings of SIGGRAPH 99 (August), 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nonlinear optimization framework for image-based modeling on programmable graphics hardware

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SIGGRAPH '03: ACM SIGGRAPH 2003 Papers
              July 2003
              683 pages
              ISBN:1581137095
              DOI:10.1145/1201775

              Copyright © 2003 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 July 2003

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              SIGGRAPH '03 Paper Acceptance Rate81of424submissions,19%Overall Acceptance Rate1,822of8,601submissions,21%

              Upcoming Conference

              SIGGRAPH '24

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader