1932

Abstract

In this article, we first present some foundational results about the stability and positive stabilization of continuous-time positive systems. Necessary and sufficient conditions for achieving stability are provided, together with some desired performance in terms of disturbance attenuation. These conditions are expressed in terms of linear programming and scale well with the system size. We then discuss the interconnection of positive subsystems by means of a static output feedback that preserves positivity, and propose conditions to achieve both stability and the asymptotic alignment of the closed-loop output to a desired vector. Finally, we describe some results for a class of parameterized positive systems. The second part of the article presents some interesting applications of the results presented in the first part. Specifically, control problems for heating networks, formation control, power control in wireless communication, and the evolutionary dynamics of cancer and HIV are formalized and solved as optimal control problems for positive systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061520-010621
2021-05-03
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-061520-010621.html?itemId=/content/journals/10.1146/annurev-control-061520-010621&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Luenberger D. 1979. Introduction to Dynamical Systems New York: Wiley & Sons
  2. 2. 
    Farina L, Benvenuti L. 1997. Polyhedral reachable set with positive controls. Math. Control Signals Syst. 10:364–80
    [Google Scholar]
  3. 3. 
    Ohta Y, Maeda H, Kodama S 1984. Reachability, observability and realizability of continuous-time positive systems. SIAM J. Control Optim. 22:171–80
    [Google Scholar]
  4. 4. 
    Valcher ME. 1996. Controllability and reachability criteria for discrete time positive systems. Int. J. Control 65:511–36
    [Google Scholar]
  5. 5. 
    Valcher ME. 2009. Reachability properties of continuous-time positive systems. IEEE Trans. Autom. Control 54:1586–90
    [Google Scholar]
  6. 6. 
    Back J, Astolfi A. 2008. Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations. SIAM J. Control Optim. 47:345–73
    [Google Scholar]
  7. 7. 
    Dautrebande N, Bastin G. 1999. Positive linear observers for positive linear systems. 1999 European Control Conference1092–95 Piscataway, NJ: IEEE
    [Google Scholar]
  8. 8. 
    Anderson B, Deistler M, Farina L, Benvenuti L 1996. Nonnegative realization of a linear system with nonnegative impulse response. IEEE Trans. Circuits Syst. I 43:134–42
    [Google Scholar]
  9. 9. 
    Benvenuti L, Farina L. 2004. A tutorial on the positive realization problem. IEEE Trans. Autom. Control 49:651–64
    [Google Scholar]
  10. 10. 
    Farina L. 1996. On the existence of a positive realization. Syst. Control Lett. 28:219–26
    [Google Scholar]
  11. 11. 
    Maeda H, Kodama S. 1981. Positive realization of difference equations. IEEE Trans. Circuits Syst. 28:39–47
    [Google Scholar]
  12. 12. 
    Hinrichsen D, Plischke E. 2007. Robust stability and transient behaviour of positive linear systems. Vietnam J. Math. 35:429–62
    [Google Scholar]
  13. 13. 
    Son N, Hinrichsen D. 1996. Robust stability of positive continuous time systems. Numer. Funct. Anal. Optim. 17:649–59
    [Google Scholar]
  14. 14. 
    Ait Rami M, Tadeo F 2007. Control synthesis for positive linear systems with bounded control. IEEE Trans. Circuits Syst. II 54:151–55
    [Google Scholar]
  15. 15. 
    de Leenheer P, Aeyels D 2001. Stabilization of positive linear systems. Syst. Control Lett. 44:259–271
    [Google Scholar]
  16. 16. 
    Gao H, Lam J, Wang C, Xu S 2005. Control for stability and positivity: equivalent conditions and computation. IEEE Trans. Circuits Syst. II 52:540–44
    [Google Scholar]
  17. 17. 
    Roszak B, Davison E. 2009. Necessary and sufficient conditions for stabilizability of positive LTI systems. Syst. Control Lett. 58:474–81
    [Google Scholar]
  18. 18. 
    Briat C. 2013. Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: L1-gain and L-gain characterization. Int. J. Robust Nonlinear Control 23:1932–54
    [Google Scholar]
  19. 19. 
    Ebihara Y, Peaucelle D, Arzelier D 2011. L1 gain analysis of linear positive systems and its application. 2011 50th IEEE Conference on Decision and Control and European Control Conference4029–34 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Tanaka T, Langbort C. 2011. The bounded real lemma for internally positive systems and H-infinity structured static state feedback. IEEE Trans. Autom. Control 56:2218–23
    [Google Scholar]
  21. 21. 
    Rantzer A. 2016. On the Kalman-Yakubovich-Popov lemma for positive systems. IEEE Trans. Autom. Control 61:1346–49
    [Google Scholar]
  22. 22. 
    Perron O. 1907. Zur Theorie der Matrizen. Math. Ann. 64:248–63
    [Google Scholar]
  23. 23. 
    Frobenius G. 1968. Über Matrizen aus nicht negativen Elementen. Sitzungsber. K. Preuss. Akad. Wiss. 26:456–77
    [Google Scholar]
  24. 24. 
    Berman A, Neumann M, Stern R 1989. Nonnegative Matrices in Dynamic Systems New York: Wiley & Sons
  25. 25. 
    Berman A, Plemmons R. 1979. Nonnegative Matrices in the Mathematical Sciences New York: Academic
  26. 26. 
    Carson E, Cobelli C. 2001. Modelling Methodology for Physiology and Medicine San Diego: Academic
  27. 27. 
    Haddad W, Chellaboina V. 2005. Stability and dissipativity theory for nonnegative dynamic systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6:35–65
    [Google Scholar]
  28. 28. 
    Haddad W, Chellaboina V, Hui Q 2010. Nonnegative and Compartmental Dynamical Systems Princeton, NJ: Princeton Univ. Press
  29. 29. 
    Hernandez-Vargas E, Middleton R, Colaneri P, Blanchini F 2011. Discrete-time control for switched positive systems with application to mitigating viral escape. Int. J. Robust Nonlinear Control 21:1093–111
    [Google Scholar]
  30. 30. 
    Jacquez J. 1972. Compartmental Analysis in Biology and Medicine Amsterdam: Elsevier
  31. 31. 
    Blanchini F, Colaneri P, Valcher ME 2015. Switched linear positive systems. Found. Trends Syst. Control 2:101–273
    [Google Scholar]
  32. 32. 
    Blanchini F, Giordano G. 2014. Piecewise-linear Lyapunov functions for structural stability of biochemical networks. Automatica 50:2482–94
    [Google Scholar]
  33. 33. 
    Del Vecchio D, Murray RM 2014. Biomolecular Feedback Systems Princeton, NJ: Princeton Univ. Press
  34. 34. 
    Ait Rami M, Bokharaie VS, Mason O, Wirth FR 2014. Stability criteria for SIS epidemiological models under switching policies. Discrete Contin. Dyn. B 19:2865–87
    [Google Scholar]
  35. 35. 
    Hernandez-Vargas E, Middleton R. 2014. Modelling the three stages in HIV infection. J. Theor. Biol. 320:33–40
    [Google Scholar]
  36. 36. 
    Moreno Y, Pastor-Satorras R, Vespignani A 2002. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26:521–29
    [Google Scholar]
  37. 37. 
    Shorten R, Wirth F, Leith D 2006. A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Trans. Netw. 14:616–29
    [Google Scholar]
  38. 38. 
    Zappavigna A, Charalambous T, Knorn F 2012. Unconditional stability of the Foschini-Miljanic algorithm. Automatica 48:219–24
    [Google Scholar]
  39. 39. 
    Benvenuti L, Farina L. 1996. Discrete-time filtering via charge routing networks. Signal Process 49:207–15
    [Google Scholar]
  40. 40. 
    Benvenuti L, Farina L. 2001. The design of fiber-optic filters. J. Lightwave Technol. 19:1366–75
    [Google Scholar]
  41. 41. 
    Benvenuti L, Farina L, Anderson B 2001. The positive side of filters: a summary. IEEE Circuits Syst. Mag. 1:332–36
    [Google Scholar]
  42. 42. 
    Nieuwenhuis J. 1986. Some results about a Leontieff-type model. Frequency Domain and State Space Methods for Linear Systems CI Byrnes, A Lindquist 213–25 Amsterdam: Elsevier
    [Google Scholar]
  43. 43. 
    Seneta E. 1981. Non-Negative Matrices and Markov Chains New York: Springer
  44. 44. 
    Farina L. 2002. Positive systems in the state space approach: main issues and recent results Paper presented at the 15th International Symposium on the Mathematical Theory of Networks and Systems Notre Dame, IN: Aug. 12–16
  45. 45. 
    Rantzer A, Valcher ME. 2018. A tutorial on positive systems and large scale control. 2018 IEEE Conference on Decision and Control3686–97 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Farina L, Rinaldi S. 2000. Positive Linear Systems: Theory and Applications New York: Wiley & Sons
  47. 47. 
    Kaczorek T. 2002. Positive 1D and 2D Systems London: Springer
  48. 48. 
    Rantzer A. 2015. Scalable control of positive systems. Eur. J. Control 24:72–80
    [Google Scholar]
  49. 49. 
    Wang YS, Matni N, Doyle JC 2018. Separable and localized system level synthesis for large-scale systems. IEEE Trans. Autom. Control 63:4234–49
    [Google Scholar]
  50. 50. 
    Valcher ME, Misra P. 2013. On the stabilizability and consensus of positive homogeneous multi-agent dynamical systems. IEEE Trans. Autom. Control 59:1936–41
    [Google Scholar]
  51. 51. 
    Valcher ME, Zorzan I. 2017. On the consensus of homogeneous multi-agent systems with positivity constraints. IEEE Trans. Autom. Control 62:5096–110
    [Google Scholar]
  52. 52. 
    Ebihara Y, Peaucelle D, Arzelier D 2012. Decentralized control of positive systems using L1-induced norm characterization. 2012 51st IEEE Conference on Decision and Control6653–58 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Rantzer A. 2011. Distributed control of positive systems. 2011 50th IEEE Conference on Decision and Control and European Control Conference6608–11 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Ebihara Y, Peaucelle D, Arzelier D 2013. Stability and persistence analysis of large scale interconnected positive systems. 2013 European Control Conference3366–71 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Moylan P, Hill D. 1978. Stability criteria for large-scale systems. IEEE Trans. Autom. Control 23:143–49
    [Google Scholar]
  56. 56. 
    Sandell N, Varaiya P, Athans M, Safonov M 1978. Survey of decentralized control methods for large scale systems. IEEE Trans. Autom. Control 23:108–28
    [Google Scholar]
  57. 57. 
    Ebihara Y, Peaucelle D, Arzelier D 2017. Steady-state analysis of delay interconnected positive systems and its application to formation control. IET Control Theor. Appl. 11:2783–92
    [Google Scholar]
  58. 58. 
    Fornasini E, Valcher ME. 2005. Controllability and reachability of 2D positive systems: a graph theoretic approach. IEEE Trans. Circuits Syst. I 52:576–85
    [Google Scholar]
  59. 59. 
    Smith H. 1995. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Providence, RI: Am. Math. Soc.
  60. 60. 
    Zhou K, Doyle J, Glover K 1996. Robust and Optimal Control Upper Saddle River, NJ: Prentice Hall
  61. 61. 
    Horn R, Johnson C. 1991. Topics in Matrix Analysis Cambridge, UK: Cambridge Univ. Press
  62. 62. 
    Boyd S, Ghaoui LE, Feron E, Balakrishnan V 1994. Linear Matrix Inequalities in System and Control Theory Philadelphia: Soc. Ind. Appl. Math.
  63. 63. 
    Rantzer A. 2015. Scalable control of positive systems. Eur. J. Control 24:72–80
    [Google Scholar]
  64. 64. 
    Lidström C, Rantzer A. 2016. Optimal H state feedback for systems with symmetric and Hurwitz state matrix. 2016 American Control Conference3366–71 Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65. 
    Ebihara Y, Peaucelle D, Arzelier D 2017. Analysis and synthesis of interconnected positive systems. IEEE Trans. Autom. Control 62:652–67
    [Google Scholar]
  66. 66. 
    Colaneri P, Middleton RH, Chen Z, Caporale D, Blanchini F 2014. Convexity of the cost functional in an optimal control problem for a class of positive switched systems. Automatica 50:1227–34
    [Google Scholar]
  67. 67. 
    Rantzer A, Bernhardsson B. 2014. Control of convex-monotone systems. 53rd IEEE Conference on Decision and Control2378–83 Piscataway, NJ: IEEE
    [Google Scholar]
  68. 68. 
    Dhingra NK, Colombino M, Jovanović M 2016. On the convexity of a class of structured optimal control problems for positive systems. 2016 European Control Conference825–30 Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69. 
    Ebihara Y, Peaucelle D, Arzelier D 2014. Efficient convergence rate analysis of multi-agent positive systems under formation control. IFAC Proc. Vol. 47:33790–96
    [Google Scholar]
  70. 70. 
    Charalambous T, Lestas I, Vinnicombe G 2008. On the stability of the Foschini-Miljanic algorithm with time-delays. 2008 47th IEEE Conference on Decision and Control2991–96 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71. 
    Colombino M, Smith RS. 2015. A convex characterization of robust stability for positive and positively dominated linear systems. IEEE Trans. Autom. Control 61:1965–71
    [Google Scholar]
  72. 72. 
    Zames G. 1966. On the input-output stability of nonlinear time-varying feedback systems, part I: conditions derived using concepts of loop gain. IEEE Trans. Autom. Control 11:228–38
    [Google Scholar]
  73. 73. 
    Zames G. 1966. On the input-output stability of nonlinear time-varying feedback systems, part II: conditions involving circles in the frequency plane and sector nonlinearities. IEEE Trans. Autom. Control 11:465–76
    [Google Scholar]
  74. 74. 
    Khalil HK. 1996. Nonlinear Systems Upper Saddle River, NJ: Prentice Hall. , 2nd. ed.
  75. 75. 
    Eigen M, McCaskill J, Schuster P 1989. The molecular quasi-species. Adv. Chem. Phys. 75:149–263
    [Google Scholar]
  76. 76. 
    Jonsson VD, Blakely CM, Lin L, Asthana S, Matni N et al. 2017. Novel computational method for predicting polytherapy switching strategies to overcome tumor heterogeneity and evolution. Sci. Rep. 7:44206
    [Google Scholar]
  77. 77. 
    Jonsson V, Rantzer A, Murray RM 2014. A scalable formulation for engineering combination therapies for evolutionary dynamics of disease. 2014 American Control Conference2771–78 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40:4–7
    [Google Scholar]
/content/journals/10.1146/annurev-control-061520-010621
Loading
/content/journals/10.1146/annurev-control-061520-010621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error