Perceptions, Tensions, and Contradictions in Timber Construction: Insights from End-Users in a Chilean Forest City
Abstract
:1. Introduction
1.1. Perception of Timber Construction
1.2. Bibliometric Analysis
2. Methodology
2.1. The Survey
2.2. The Spatial Sampling
- When the increase in the ratio is marginal with the growth of K clusters.
- The ratio is greater than 0.85, and the within-cluster variance is less than one year of individual education for all clusters.
- That no overlap occurs in cluster recognition and that it is assimilable to a concept, in this case, socio-economic.
- The total within-cluster sum of squares: 2.27763
- The between-cluster sum of squares: 52.4369
- The ratio of the between-cluster sum of squares to the total sum of squares: 0.958373
- Traditional Methodology with 100 cases: 9.79% margin of error
- Traditional Methodology with 360 cases: 5.15% margin of error
- Spatial Sampling with 88 cases: 6% margin of error
- Spatial Sampling with 100 cases: 5.5% margin of error
2.3. Principal Component Analysis and Cluster Analysis
3. Results
3.1. Descriptive Analysis
3.2. Exploratory Analysis
- Major disadvantages (C1): is associated with negative perceptions of wooden construction in terms of low durability over time, high exposure to insect pests, high maintenance costs, and limitations in architectural design when industrialised.
- Major advantages (C2): is associated with positive perceptions of wooden construction in terms of lower construction costs, speed of construction, and ease of expansion.
- The denialist drift (C3): is associated with the denial of wooden construction’s contribution to combating climate change and a high socioeconomic level (understood as higher educational and occupational levels).
- Urgent concerns (C4): is associated with the perception that wooden houses burn easily and that their construction process causes deforestation.
- The great advantage of industrialisation (C5): corresponds to lower construction costs.
- Hope for solution (C6): openness to the possibilities of technically solving the fire risk in wooden houses and the potential for constructing high-rise wooden buildings.
- Less popular advantages (C7): associated with positive perceptions of wooden construction regarding its structural strength and lower waste generation.
- Conservative Profile (cluster 1, N = 23): Mostly linked to high and middle-high socioeconomic levels (52%), men (61%) aged 45–65 (57%) with university education and mid-level executive roles (78%), who recycle regularly (87%) and have a good perception of the wood industry (43%).
- Disaffected Profile (cluster 2, N = 23): Mainly connected to a low socioeconomic level (57%), women (65%) with secondary education (57%) who view wooden construction as related to first-time homeownership (91%) state that their environmental contribution is only domestic recycling (57%) and have a bad perception of the wood industry (57%).
- Progressive Profile (cluster 3, N = 13): Mostly linked to a middle socioeconomic level (53%), balanced in terms of gender (46% for each sex), with university (23%) and postgraduate education (15%), employed (54%), and having a mixed opinion on wooden housing (54% for first-time homeownership and 31% for second home to vacations). They report using public transport (38%) and bicycles (23%) as environmentally friendly actions.
- Moderate Profile (cluster 4, N = 15): Mainly connected to middle-high and middle socioeconomic level (54%), women (60%) with diverse educational levels who view wooden construction as related to first-time homeownership (93%) state that they implement energy efficiency measures at home (47%), and likely pragmatic in decision-making regarding wooden housing (59% express willingness for a home that has environmental or construction quality certification, and 36% value the concrete savings that wooden construction can offer) and neutral to the wood industry (60% for the answer “neither good nor bad”).
- Vulnerable Profile (cluster 5, N = 22): Mostly connected to low and very low socioeconomic level (54%), men (59%) with basic or secondary education (86%), unemployed or with low or informal jobs (55%), with a notable perception of wooden construction associated with social housing (25%). They convey willingness and interest in incentives for acquiring a wooden home and are neutral to the wood industry (59%).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Q9.
- A wooden house lasts less than a brick or concrete construction.
- Q10.
- A wooden house is more exposed to insect pests.
- Q11.
- A wooden house is as resistant as a brick or concrete construction.
- Q12.
- A wooden house burns easily.
- Q13.
- The fire risk in a wooden house can be technically resolved.
- Q14.
- Wood construction helps combat climate change.
- Q15.
- The use of wood in construction leads to deforestation.
- Q16.
- A wooden house offers better thermal comfort than a brick or concrete construction.
- Q17.
- A wooden house has acoustic insulation problems.
- Q18.
- Building a wooden house is cheaper than a brick or concrete construction.
- Q19.
- A wooden house is more expensive to maintain.
- Q20.
- A wooden house is faster to build than a brick or concrete construction.
- Q21.
- A wooden house is easier to expand according to the family’s needs.
- Q22.
- With wood, houses and also high-rise apartment buildings can be constructed.
- Q23.
- Architectural design possibilities are more limited in a prefabricated wooden house (where components and modules are built in a factory and assembled on-site).
- Q24.
- A prefabricated wooden house is cheaper to build than one built traditionally (where it is completely completed on-site).
- Q25.
- The construction of a prefabricated wooden house generates less waste and debris than one built in a traditional way (where it is completely completed on-site).
Appendix B
Questions | Strongly Disagree | Disagree | Neither Agree nor Disagree | Agree | Strongly Agree | Don’t Know/ No Opinion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | |
Q9 | 20 | 20.8% | 7 | 7.3% | 65 | 67.7% | 4 | 4.2% | ||||
Q10 | 2 | 2.1% | 5 | 5.2% | 76 | 79.2% | 13 | 13.5% | ||||
Q11 | 2 | 2.1% | 38 | 39.6% | 17 | 17.7% | 38 | 39.6% | 1 | 1.0% | ||
Q12 | 2 | 2.1% | 57 | 59.4% | 34 | 35.4% | 3 | 3.1% | ||||
Q13 | 1 | 1.0% | 15 | 15.6% | 9 | 9.4% | 68 | 70.8% | 2 | 2.1% | 1 | 1.0% |
Q14 | 4 | 4.2% | 36 | 37.5% | 28 | 29.2% | 25 | 26.0% | 3 | 3.1% | ||
Q15 | 6 | 6.3% | 6 | 6.3% | 65 | 67.7% | 18 | 18.8% | 1 | 1.0% | ||
Q16 | 10 | 10.4% | 8 | 8.3% | 61 | 63.5% | 13 | 13.5% | 4 | 4.2% | ||
Q17 | 24 | 25.0% | 24 | 25.0% | 44 | 45.8% | 3 | 3.1% | 1 | 1.0% | ||
Q18 | 1 | 1.0% | 15 | 15.6% | 29 | 30.2% | 47 | 49.0% | 4 | 4.2% | ||
Q19 | 21 | 21.9% | 9 | 9.4% | 61 | 63.5% | 4 | 4.2% | 1 | 1.0% | ||
Q20 | 1 | 1.0% | 7 | 7.3% | 21 | 21.9% | 58 | 60.4% | 8 | 8.3% | 1 | 1.0% |
Q21 | 3 | 3.1% | 1 | 1.0% | 67 | 69.8% | 24 | 25.0% | 1 | 1.0% | ||
Q22 | 8 | 8.3% | 67 | 69.8% | 9 | 9.4% | 12 | 12.5% | ||||
Q23 | 9 | 9.4% | 11 | 11.5% | 70 | 72.9% | 6 | 6.3% | ||||
Q24 | 1 | 1.0% | 6 | 6.3% | 81 | 84.4% | 7 | 7.3% | 1 | 1.0% | ||
Q25 | 3 | 3.1% | 19 | 19.8% | 70 | 72.9% | 3 | 3.1% | 1 | 1.0% |
Appendix C
References
- INE. Anuario de La Edificación 2022; Instituto Nacional de Estadísticas: Santiago, Chile, 2024. [Google Scholar]
- Zizek, S. Introduction: The Spectre of Ideology. In Mapping Ideology; Verso: London, UK, 2012; pp. 1–33. [Google Scholar]
- Collect. Informe Estudio Cuantitativo “Madera Como Material Constructivo”; Preparado para Proyecto FONDECT D03I1020; Collect: Santiago, Chile, 2005. [Google Scholar]
- Gysling, J.; Kahler, C.; Soto, D.; Mejías, W.; Poblete, P.; Álvarez, V.; Bañados, J.C.; Baeza, D.; Pardo, E. Madera y Construcción: Hacia Una Simbiosis Estratégica; Instituto Forestal: Santiago, Chile, 2021. [Google Scholar] [CrossRef]
- Nunn, N. Rethinking Economic Development. Can. J. Econ./Rev. Can. D’écon. 2019, 52, 1349–1373. [Google Scholar] [CrossRef]
- Terraza, H.C.; Donoso, R.; Victorero, F.; Ibanez, D. La Construcción de Viviendas En Madera En Chile: Un Pilar Para El Desarrollo Sostenible y La Agenda de Reactivación; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Hong, J.; Shen, G.Q.; Mao, C.; Li, Z.; Li, K. Life-Cycle Energy Analysis of Prefabricated Building Components: An Input–Output-Based Hybrid Model. J. Clean. Prod. 2016, 112, 2198–2207. [Google Scholar] [CrossRef]
- López-Guerrero, R.E.; Vera, S.; Carpio, M. A Quantitative and Qualitative Evaluation of the Sustainability of Industrialised Building Systems: A Bibliographic Review and Analysis of Case Studies. Renew. Sustain. Energy Rev. 2022, 157, 112034. [Google Scholar] [CrossRef]
- Donoso, P.; Mujica Hoevelmayer, R.; Reyes Gallardo, R.; Romero, J. Precedentes y Efectos Del Neoliberalismo En El Sector Forestal Chileno y Transición Hacia Un Nuevo Modelo. In Democracia versus Neoliberalismo, 25 años de Neoliberalismo en Chile; Pinol Bazzi, A., Ed.; Fundación Rosa Luxemburgo, Instituto de Ciencias Alejandro Lipschutz (ICAL), CLACSO: Santiago, Chile, 2015; p. 352. [Google Scholar]
- Alvarez-Garreton, C.; Lara, A.; Boisier, J.P.; Galleguillos, M. The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests 2019, 10, 473. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean Forest Subsidies on Forest Cover, Carbon and Biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar] [CrossRef]
- Salas, C.; Donoso, P.J.; Vargas, R.; Arriagada, C.A.; Pedraza, R.; Soto, D.P. The Forest Sector in Chile: An Overview and Current Challenges. J. For. 2016, 114, 562–571. [Google Scholar] [CrossRef]
- Braun, A.C.; Faßnacht, F.; Valencia, D.; Sepulveda, M. Consequences of Land-Use Change and the Wildfire Disaster of 2017 for the Central Chilean Biodiversity Hotspot. Reg. Environ. Chang. 2021, 21, 37. [Google Scholar] [CrossRef]
- Alvarez, V.; Poblete, P.; Soto, D.; Gysling, J.; Kahler, C.; Pardo, E.; Bañados, J.C.; Baeza, D. Anuario Forestal 2022; Boletín, Ed.; INFOR: Santiago, Chile, 2022. [Google Scholar]
- CONAF. Catastro de Los Recursos Vegetacionales Nativos de Chile al Año 2020; Corporación Nacional Forestal, Departamento de Monitoreo de Ecosistemas Forestales: Santiago, Chile, 2021. [Google Scholar]
- Instituto de Asuntos Públicos. Estrategia Regional de Desarrollo, “Asesoría Para La Actualización de La Estrategia Regional de Desarrollo de La Región de Los Ríos. Análisis y Planificación Territorial Prospectiva”; Universidad de Chile: Santiago, Chile, 2022. [Google Scholar]
- Pilquinao, B.; Martin, M.; Büchner, C.; Sagardía, R.; Molina, E.; Schueftan, A.; Barrales, L. Informe Final, “Propuesta y Manejo de Bosque Nativo Para Diferentes Alternativas de Comercialización de La Madera”; BIP 30485696-0; Instituto Forestal, Sede Los Ríos: Valdivia, Chile, 2019. [Google Scholar]
- Reyes, R.; Nelson, H.; Zerriffi, H. Firewood: Cause or Consequence? Underlying Drivers of Firewood Production in the South of Chile. Energy Sustain. Dev. 2018, 42, 97–108. [Google Scholar] [CrossRef]
- Müller-Using, S.; Bahamóndez, V.C.; Sagardía Parga, R.O.; Vergara Asenjo, G.E.; Reyes Gallardo, R.A. Bosques Nativos de Chile: Estado, Presiones e Importancia En Una Época de Cambios; INFOR: Santiago, Chile, 2021; ISBN 978-956-318-186-9. [Google Scholar]
- Román, B.; Lozada, P.; Ortega, Y.; Neira, E. Análisis de Encadenamientos Productivos de Leña y Madera Nativa En Las Regiones de Los Ríos y Los Lagos y Propuestas Para Su Desarrollo; Informe Final, Proyecto FIBN 15/2015; FIBN: Valdivia, Chile, 2017. [Google Scholar]
- Clarivate Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 28 April 2024).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Gold, S.; Rubik, F. Consumer Attitudes towards Timber as a Construction Material and towards Timber Frame Houses—Selected Findings of a Representative Survey among the German Population. J. Clean. Prod. 2009, 17, 303–309. [Google Scholar] [CrossRef]
- Høibø, O.; Hansen, E.; Nybakk, E. Building Material Preferences with a Focus on Wood in Urban Housing: Durability and Environmental Impacts. Can. J. For. Res. 2015, 45, 1617–1627. [Google Scholar] [CrossRef]
- Lähtinen, K.; Harju, C.; Toppinen, A. Consumers’ Perceptions on the Properties of Wood Affecting Their Willingness to Live in and Prejudices against Houses Made of Timber. Wood Mater. Sci. Eng. 2019, 14, 325–331. [Google Scholar] [CrossRef]
- Viholainen, N.; Kylkilahti, E.; Autio, M.; Toppinen, A. A Home Made of Wood: Consumer Experiences of Wooden Building Materials. Int. J. Consum. Stud. 2020, 44, 542–551. [Google Scholar] [CrossRef]
- Kylkilahti, E.; Berghäll, S.; Autio, M.; Nurminen, J.; Toivonen, R.; Lähtinen, K.; Vihemäki, H.; Franzini, F.; Toppinen, A. A Consumer-Driven Bioeconomy in Housing? Combining Consumption Style with Students’ Perceptions of the Use of Wood in Multi-Storey Buildings. Ambio 2020, 49, 1943–1957. [Google Scholar] [CrossRef] [PubMed]
- Toppinen, A.; Röhr, A.; Pätäri, S.; Lähtinen, K.; Toivonen, R. The Future of Wooden Multistory Construction in the Forest Bioeconomy—A Delphi Study from Finland and Sweden. J. For. Econ. 2018, 31, 3–10. [Google Scholar] [CrossRef]
- Larasatie, P.; Guerrero, J.E.; Conroy, K.; Hall, T.E.; Hansen, E.; Needham, M.D. What Does the Public Believe about Tall Wood Buildings? An Exploratory Study in the US Pacific Northwest. J. For. 2018, 116, 429–436. [Google Scholar] [CrossRef]
- Viholainen, N.; Franzini, F.; Lähtinen, K.; Nyrud, A.Q.; Widmark, C.; Hoen, H.F.; Toppinen, A. Citizen Views on Wood as a Construction Material: Results from Seven European Countries. Can. J. For. Res. 2021, 51, 647–659. [Google Scholar] [CrossRef]
- Nyrud, A.Q.; Heltorp, K.M.A.; Roos, A.; Aguilar, F.X.; Lähtinen, K.; Viholainen, N.; Berghäll, S.; Toppinen, A.; Thorsen, B.J.; Kniivilä, M.; et al. Citizens’ Knowledge of and Perceptions of Multi-Storey Wood Buildings in Seven European Countries. Scand. J. For. Res. 2024, 39, 8–19. [Google Scholar] [CrossRef]
- Roos, A.; Hoen, H.-F.; Aguilar, F.X.; Haapala, A.; Hurmekoski, E.; Jussila, J.; Lähtinen, K.; Mark-Herbert, C.; Nord, T.; Toivonen, R.; et al. Impact of Prospective Residents’ Dwelling Requirements on Preferences for House Construction Materials. Wood Mater. Sci. Eng. 2022, 18, 1275–1284. [Google Scholar] [CrossRef]
- Mergel, C.; Menrad, K.; Decker, T. Which Factors Influence Consumers’ Selection of Wood as a Building Material for Houses? Can. J. For. Res. 2024, 54, 467–478. [Google Scholar] [CrossRef]
- Harju, C.; Lähtinen, K. Consumers’ Consciousness for Sustainable Consumption and Their Perceptions of Wooden Building Product Quality. For. Prod. J. 2022, 72, 155–169. [Google Scholar] [CrossRef]
- Caniato, M.; Marzi, A.; Bettarello, F.; Gasparella, A. Designers’ Expectations of Buildings Physics Performances Related to Green Timber Buildings. Energy Build. 2022, 276, 112525. [Google Scholar] [CrossRef]
- Encinas, F.; Marmolejo-Duarte, C.; Aguirre-Nuñez, C.; Vergara-Perucich, F. When Residential Energy Labeling Becomes Irrelevant: Sustainability vs. Profitability in the Liberalized Chilean Property Market. Sustainability 2020, 12, 9638. [Google Scholar] [CrossRef]
- Encinas, F.; Marmolejo-Duarte, C.; Sánchez de la Flor, F.; Aguirre, C. Does Energy Efficiency Matter to Real Estate-Consumers? Survey Evidence on Willingness to Pay from a Cost-Optimal Analysis in the Context of a Developing Country. Energy Sustain. Dev. 2018, 45, 110–123. [Google Scholar] [CrossRef]
- Encinas, F.; Marmolejo-Duarte, C.; Wagemann, E.; Aguirre, C. Energy-Efficient Real Estate or How It Is Perceived by Potential Homebuyers in Four Latin American Countries. Sustainability 2019, 11, 3531. [Google Scholar] [CrossRef]
- Giorgio, B.; Blanchet, P.; Barlet, A. Social Representations of Mass Timber and Prefabricated Light-Frame Wood Construction for Multi-Story Housing: The Vision of Users in Quebec. Buildings 2022, 12, 2073. [Google Scholar] [CrossRef]
- Leszczyszyn, E.; Heräjärvi, H.; Verkasalo, E.; Garcia-Jaca, J.; Araya-Letelier, G.; Lanvin, J.-D.; Bidzińska, G.; Augustyniak-Wysocka, D.; Kies, U.; Calvillo, A.; et al. The Future of Wood Construction: Opportunities and Barriers Based on Surveys in Europe and Chile. Sustainability 2022, 14, 4358. [Google Scholar] [CrossRef]
- Petruch, M.; Walcher, D. Timber for Future? Attitudes towards Timber Construction by Young Millennials in Austria—Marketing Implications from a Representative Study. J. Clean. Prod. 2021, 294, 126324. [Google Scholar] [CrossRef]
- Griffith, D.A. Effective Geographic Sample Size in the Presence of Spatial Autocorrelation. Ann. Assoc. Am. Geogr. 2005, 95, 740–760. [Google Scholar] [CrossRef]
- Truffello, R.; Flores, M.; Garretón, M.; Ruz, G. La Importancia Del Espacio Geográfico Para Minimizar El Error de Muestras Representativas. Rev. Geogr. Norte Gd. 2022, 81, 137–160. [Google Scholar] [CrossRef]
- Sáenz Vela, H.M. Revisando Los Métodos de Agregación de Unidades Espaciales: MAUP, Algoritmos y Un Breve Ejemplo. Estud. Demogr. Urbanos Col. Mex. 2016, 31, 385–411. [Google Scholar] [CrossRef]
- Encinas, F.; Truffello, R.; Aguirre-Nuñez, C.; Puig, I.; Vergara-Perucich, F.; Freed, C.; Rodríguez, B. Mapping Energy Poverty: How Much Impact Do Socioeconomic, Urban and Climatic Variables Have at a Territorial Scale? Land 2022, 11, 1449. [Google Scholar] [CrossRef]
- Encinas, F.; Truffello, R.; Aguirre, C.; Hidalgo, R. Speculation, Land Rent, and the Neoliberal City. Or Why Free Market Is Not Enough. ARQ 2019, 102, 120–133. [Google Scholar] [CrossRef]
- She, B.; Duque, J.C.; Ye, X. The Network-Max-P-Regions Model. Int. J. Geogr. Inf. Sci. 2017, 31, 962–981. [Google Scholar] [CrossRef]
- Duque, J.C.; Anselin, L.; Rey, S.J. The Max-p-Regions Problem. J. Reg. Sci. 2012, 52, 397–419. [Google Scholar] [CrossRef]
- AIM. Actualización GSE AIM 2023 y Manual de Aplicación; AIM: Santiago, Chile, 2024. [Google Scholar]
- Punj, G.; Stewart, D.W. Cluster Analysis in Marketing Research: Review and Suggestions for Application. J. Mark. Res. 1983, 20, 134–148. [Google Scholar] [CrossRef]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Análisis Multivariante; Quinta, Ed.; Pearson Educación, S.A.: Madrid, Spain, 2005. [Google Scholar]
- Kremer, P.; Symmons, M. Overcoming Psychological Barriers to Widespread Acceptance of Mass Timber Construction in Australia; PNA309-1213; Forest & Wood Products Australia Limited: Melbourne, Australia, 2016. [Google Scholar]
- DEFRA A Framework for Pro-Environmental Behaviours; Department for Environment, Food and Rural Affairs: London, UK, 2007.
- Eppel, S.; Sharp, V.; Davies, L. A Review of Defra’s Approach to Building an Evidence Base for Influencing Sustainable Behaviour. Resour. Conserv. Recycl. 2013, 79, 30–42. [Google Scholar] [CrossRef]
- FAO. Status of Public Policies Encouraging Wood Use in Construction—A Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Ministerio de Vivienda y Urbanismo. Metodología de Cálculo Del Déficit Habitacional Cuantitativo Ajustada al Censo 2017; Centro de Estudios de Ciudad y Territorio: Santiago, Chile, 2020. [Google Scholar]
- MMA. 5to Informe Bienal de Actualización Ante La Convención Marco de Las Naciones Unidas Sobre Cambio Climático; Ministerio del Medio Ambiente: Santiago, Chile, 2022. [Google Scholar]
- Schueftan, A. Una Mirada Integrada de La Naturaleza: La Oportunidad Para La Resiliencia y La Sustentabilidad de Los Sistemas Socio-Ecológicos. In Espacios Constitucionales; Vergara-Perucich, F., Aguirre-Núñez, C., Eds.; Centro de Producción del Espacio: Santiago, Chile, 2022. [Google Scholar]
- Costa, E. Por Una Constitución Ecológica; Editorial Catalonia Ltda: Santiago, Chile, 2021. [Google Scholar]
- Comisión Nacional de Evaluación y Productividad. Informe Anual de Productividad 2023; Comisión Nacional de Evaluación y Productividad: Santiago, Chile, 2024. [Google Scholar]
- Rajabi, M.S.; Radzi, A.R.; Rezaeiashtiani, M.; Famili, A.; Rashidi, M.E.; Rahman, R.A. Key Assessment Criteria for Organizational BIM Capabilities: A Cross-Regional Study. Buildings 2022, 12, 1013. [Google Scholar] [CrossRef]
- Halimi, Z.; Bavafa, A.; Cui, Q. Barriers to Community Connectivity: An Assessment of Reconnecting Communities Pilot Program. In Proceedings of the International Conference on Transportation and Development 2024, Atlanta, Georgia, 15–18 June 2024; American Society of Civil Engineers: Reston, VA, USA, 2024; pp. 83–91. [Google Scholar]
- Sadeghi, S.; Rafiee-Dehkharghani, R.; Laknejadi, K. Three-Dimensional Optimization of Wave Barriers for Mitigating Ground Vibrations Induced by Underground Train. Environ. Sci. Pollut. Res. 2023, 31, 384–405. [Google Scholar] [CrossRef]
- Sadeghi, S.; Abedini, F.; Rafiee-Dehkharghani, R.; Laknejadi, K. Covariance Matrix Adaptation Evolution Strategy for Topology Optimization of Foundations under Static and Dynamic Loadings. Comput. Geotech. 2021, 140, 104461. [Google Scholar] [CrossRef]
- Comisión Desafíos del Futuro, Ciencia, Tecnología e Innovación. Chile Tiene Futuro Desde Sus Territorios: Comisión Desafíos Del Futuro, Ciencia, Tecnología e Innovación 2018–2022; Girardi, G., Marek, H., Amar, M., Vásquez, D., Walker, J., Eds.; Ediciones Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2022. [Google Scholar]
The Five Most Relevant Sources | The Five Most Cited Sources | The Five Most Cited Articles | The Five Most Cited References |
---|---|---|---|
Sustainability (6 articles), Canadian Journal of Forest Research (3 articles), Journal of Cleaner Production (3 articles), Energy and Buildings (2 articles), Forest Products Journal (2 articles) | Journal of Cleaner Production (88 articles), Energy and Buildings (44 articles), Building and Environment (41 articles), Forest Policy and Economics (39 articles), Sustainability (36 articles) | [23] 85 citations, [24] 49 citations, [25] 46 citations, [26] 32 citations, [27] 30 citations | [23] 16 citations, [24] 14 citations, [25] 14 citations, [28] 13 citations, [29] 11 citations |
Basic Themes | Motor Themes | Emerging Themes | Niche Themes |
---|---|---|---|
Construction timber buildings (including architects, construction sector, concrete, and finish) (59); Energy and consumption (including life cycle assessment) (10) | Attitudes and perceptions (including products, barriers, elements, forest, and preferences) (30); Wood and behaviour (including frame houses, consumer attitudes, and transition) (19); Energy efficiency (including thermal comfort and user satisfaction) (6) | Multiobjective optimization (including life cycle) (4) | Frame multi-storey construction (including consumers, price, and willingness-to-pay) (8); Innovation and technologies (4) |
Indicator | Dimension | Items |
---|---|---|
Sociodemographic characterisation | Age | 1 ordinal variable |
Gender | 1 dichotomic variable | |
Education level | 1 ordinal variable | |
Occupation | 1 ordinal variable | |
Household | 3 categorical variables | |
Tenure or occupancy regime | 1 ordinal variable | |
Subtotal | 8 variables | |
Perception of wooden houses | Durability | 3 categorical variables (Likert scale) |
Fire resistance | 2 categorical variables (Likert scale) | |
Climate change, sustainability and comfort | 4 categorical variables (Likert scale) | |
Costs (construction and maintenance) | 2 categorical variables (Likert scale) | |
Flexibility in construction | 3 categorical variables (Likert scale) | |
Industrialization possibilities | 3 categorical variables (Likert scale) | |
Subtotal | 17 variables | |
Decision variables for acquiring or constructing a wooden house | Housing types associated to timber construction | 1 categorical variable |
Environmental actions in daily life | 1 categorical variable | |
Factors that would encourage buying a wooden house | 1 categorical variable | |
Perception of the reputation of the wood industry | 1 categorical variable | |
Willingness to buy a wooden house | 1 categorical variable (1 to 10 scale) | |
Subtotal | 5 variables | |
Total | 30 variables |
Cluster | Socioeconomic Level | Households | p-Value | Within Clusters | Heterogeneity | N |
---|---|---|---|---|---|---|
AB | high | 4310 | 0.95 | 0.274513 | 0.5% | 8 |
C1 | medium-high | 9515 | 0.95 | 0.312347 | 0.72% | 11 |
C2 | medium | 12,151 | 0.95 | 0.31756 | 0.71% | 11 |
C3 | medium-low | 10,983 | 0.95 | 0.421324 | 1.35% | 21 |
D | low | 11,371 | 0.95 | 0.625406 | 2.1% | 32 |
E | very low | 5505 | 0.95 | 0.386478 | 1.1% | 17 |
Cluster | Socioeconomic Level | Number of Surveys | Percent of Surveys | Households per Block | Number of Blocks |
---|---|---|---|---|---|
AB | high | 8 | 8.3% | 4 | 2 |
C1 | medium-high | 18 | 18.8% | 4 | 4 |
C2 | medium | 15 | 15.6% | 4 | 4 |
C3 | medium-low | 12 | 12.5% | 4 | 3 |
D | low | 30 | 31.3% | 4 | 8 |
E | very low | 13 | 13.5% | 4 | 3 |
Total | Total | 96 | 100.0% | 24 |
Components | |||||||
---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
Eigenvalues | 2.49 | 1.93 | 1.82 | 1.71 | 1.36 | 1.23 | 1.07 |
Percent of variance | 14.6% | 11.3% | 10.7% | 10.0% | 8.0% | 7.3% | 6.3% |
Cumulative percent | 14.6% | 26.0% | 36.7% | 46.7% | 54.7% | 62.0% | 68.3% |
Variables | Components | Communalities | ||||||
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | ||
Educational level | 0.89 | 0.81 | ||||||
Occupation | 0.76 | 0.68 | ||||||
Durability over time | 0.73 | 0.65 | ||||||
Exposure to insect pests | 0.59 | 0.58 | ||||||
Structural resistance | 0.58 | 0.66 | ||||||
Fire resistance | 0.75 | 0.65 | ||||||
Possibility of solving fire risk | 0.60 | 0.75 | ||||||
Contribution to combat climate change | −0.64 | 0.62 | ||||||
Deforestation | 0.80 | 0.68 | ||||||
Construction costs | 0.64 | 0.65 | ||||||
Maintenance costs | 0.69 | 0.52 | ||||||
Speed of construction | 0.73 | 0.73 | ||||||
Ease of expansion | 0.71 | 0.71 | ||||||
Possibility of multi-storey buildings | 0.88 | 0.82 | ||||||
Architectural design possibilities | 0.65 | 0.58 | ||||||
Lower construction costs | 0.84 | 0.80 | ||||||
Less generation of construction waste | 0.80 | 0.71 |
Clustering Method | Agglomerative Hierarchical Clustering (AHC) |
---|---|
Proximity type | Euclidean distance |
Agglomeration method | Ward’s method |
Number of observations | 96 |
Input variables | C1, C2, C3, C4, C5, C6, C7 1 |
Truncation | Number of clusters = 5 |
Major Disadvantages (C1) | Major Advantages (C2) | The Denialist Drift (C3) | Urgent Concerns (C4) | The Great Advantage of Industrialization (C5) | Hopes of Solutions (C6) | Less Popular Advantages (C7) | |
---|---|---|---|---|---|---|---|
Conservative | 0.40 | 0.22 | 1.08 | −0.09 | −0.32 | 0.21 | |
Disaffected | 0.09 | −0.26 | −0.68 | −0.58 | 0.20 | −0.28 | 0.80 |
Progressive | −0.41 | −0.84 | 0.13 | 0.11 | 0.29 | −1.24 | −1.15 |
Moderate | −1.05 | −0.30 | 0.27 | 1.36 | |||
Vulnerable | 0.45 | 0.74 | −0.50 | 0.60 | −0.23 | −0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encinas, F.; Truffello, R.; Ubilla, M.; Aguirre-Nuñez, C.; Schueftan, A. Perceptions, Tensions, and Contradictions in Timber Construction: Insights from End-Users in a Chilean Forest City. Buildings 2024, 14, 2813. https://doi.org/10.3390/buildings14092813
Encinas F, Truffello R, Ubilla M, Aguirre-Nuñez C, Schueftan A. Perceptions, Tensions, and Contradictions in Timber Construction: Insights from End-Users in a Chilean Forest City. Buildings. 2024; 14(9):2813. https://doi.org/10.3390/buildings14092813
Chicago/Turabian StyleEncinas, Felipe, Ricardo Truffello, Mario Ubilla, Carlos Aguirre-Nuñez, and Alejandra Schueftan. 2024. "Perceptions, Tensions, and Contradictions in Timber Construction: Insights from End-Users in a Chilean Forest City" Buildings 14, no. 9: 2813. https://doi.org/10.3390/buildings14092813
APA StyleEncinas, F., Truffello, R., Ubilla, M., Aguirre-Nuñez, C., & Schueftan, A. (2024). Perceptions, Tensions, and Contradictions in Timber Construction: Insights from End-Users in a Chilean Forest City. Buildings, 14(9), 2813. https://doi.org/10.3390/buildings14092813